催化作用
钴
酞菁
化学
法拉第效率
电催化剂
可逆氢电极
电极
无机化学
电化学
物理化学
工作电极
有机化学
作者
Yongzhi Zhong,Xiangdong Kong,Zhigang Geng,Jie Zeng,Xuan Luo,Lin Zhang
出处
期刊:ChemPhysChem
[Wiley]
日期:2020-08-18
卷期号:21 (18): 2051-2055
被引量:8
标识
DOI:10.1002/cphc.202000576
摘要
Abstract Electroreduction of CO 2 into carbonaceous fuels or industrial chemicals using renewable energy sources is an ideal way to promote global carbon recycling. Thus, it is of great importance to develop highly selective, efficient, and stable catalysts. Herein, we prepared cobalt single atoms (Co SAs) coordinated with phthalocyanine (Co SAs‐Pc). The anchoring of phthalocyanine with Co sites enabled electron transfer from Co sites to CO 2 effectively via the π‐conjugated system, resulting in high catalytic performance of CO 2 electroreduction into CO. During the process of CO 2 electroreduction, the Faradaic efficiency (FE) of Co SAs‐Pc for CO was as high as 94.8 %. Meanwhile, the partial current density of Co SAs‐Pc for CO was −11.3 mA cm −2 at −0.8 V versus the reversible hydrogen electrode ( vs RHE), 18.83 and 2.86 times greater than those of Co SAs (−0.60 mA cm −2 ) and commercial Co phthalocyanine (−3.95 mA cm −2 ), respectively. In an H‐cell system operating at −0.8 V vs RHE over 10 h, the current density and FE for CO of Co SAs‐Pc dropped by 3.2 % and 2.5 %. A mechanistic study revealed that the promoted catalytic performance of Co SAs‐Pc could be attributed to the accelerated reaction kinetics and facilitated CO 2 activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI