Optimization of mixture proportions by statistical experimental design using response surface method - A review

响应面法 实验设计 统计推断 计算机科学 实验数据 统计模型 统计假设检验 工艺工程 数学 统计 机器学习 工程类
作者
Zhiping Li,Dagang Lü,Xiaojian Gao
出处
期刊:Journal of building engineering [Elsevier]
卷期号:36: 102101-102101 被引量:119
标识
DOI:10.1016/j.jobe.2020.102101
摘要

A comprehensive review of the statistical experimental optimization problem concerning the mixture design of various cement-based materials is presented herein. This review summarizes and discusses over 80 applications of optimum design regarding the basic test information under response surface method (RSM), including influence factor and corresponding response, statistical method, and coefficient of determination. The statistical experimental design reported in previous studies has shown that RSM is a sequential procedure to provide a suitable approximation for the mixture optimization. Then, linear, quadratic and interactive relationships of the statistical model can be evaluated available. Especially, the multi-objective optimization issues with multiple or competing performance requirements for various cement-based materials have also been reported, by considering fluidity, strength development, environmental impact, cost and durability. Overall, the results from existing publications have demonstrated that statistical inference and analysis of variance (ANOVA) are suitable for mix proportion design and process optimization of cement-based materials. The W/B ratio and mixture components are the prevalent factors in experimental design optimization, and then the fluidity and strength as the most popularly used response. Thus, theoretical optimum mixture proportioning can be used to predict valuable fresh and hardened properties. Finally, a critical discussion of the selection of design strategy, independent factors and their responses, and the experimental region involved in statistical experimental design, is provided. Based on this review, we conclude that the multi-objective optimization approaches need a further systematic study, and further studies of sustainable concrete optimization are needed by comparing the different chemical composition and particle characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洪俊熙完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
SYLH应助di采纳,获得10
刚刚
刚刚
柒毛完成签到 ,获得积分10
1秒前
搜集达人应助tatata采纳,获得20
1秒前
英俊的铭应助诚c采纳,获得10
1秒前
兔子完成签到 ,获得积分10
1秒前
1秒前
苹果巧蕊完成签到 ,获得积分10
1秒前
脑洞疼应助SDS采纳,获得10
1秒前
JamesPei应助Guo采纳,获得20
2秒前
马保国123完成签到,获得积分10
2秒前
2秒前
2秒前
迷你的冰巧完成签到,获得积分10
2秒前
万能图书馆应助学术蝗虫采纳,获得10
3秒前
慕青应助aurora采纳,获得30
3秒前
Jasper应助满意的盼夏采纳,获得10
3秒前
yitang完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
zhenzhen发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
江沅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Sean完成签到,获得积分10
6秒前
兜兜完成签到 ,获得积分10
6秒前
羊羊羊发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
7秒前
bigger.b完成签到,获得积分10
7秒前
Nerissa完成签到,获得积分10
7秒前
Dr.Tang发布了新的文献求助10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
英俊的铭应助么系么系采纳,获得10
8秒前
ding应助寒冷的奇异果采纳,获得10
8秒前
lx发布了新的文献求助10
9秒前
舒适念真发布了新的文献求助10
9秒前
沉默哈密瓜完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678