Prediction of chaotic time series using hybrid neural network and attention mechanism

计算机科学 Softmax函数 混乱的 人工神经网络 人工智能 时间序列 系列(地层学) 循环神经网络 卷积神经网络 模式识别(心理学) 算法 机器学习 生物 古生物学
作者
Weijian Huang,Yongtao Li,Yuan Huang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:70 (1): 010501-010501 被引量:25
标识
DOI:10.7498/aps.70.20200899
摘要

Chaotic time series forecasting has been widely used in various domains, and the accurate predicting of the chaotic time series plays a critical role in many public events. Recently, various deep learning algorithms have been used to forecast chaotic time series and achieved good prediction performance. In order to improve the prediction accuracy of chaotic time series, a prediction model (Att-CNN-LSTM) is proposed based on hybrid neural network and attention mechanism. In this paper, the convolutional neural network (CNN) and long short-term memory (LSTM) are used to form a hybrid neural network. In addition, a attention model with <i>softmax</i> activation function is designed to extract the key features. Firstly, phase space reconstruction and data normalization are performed on a chaotic time series, then convolutional neural network (CNN) is used to extract the spatial features of the reconstructed phase space, then the features extracted by CNN are combined with the original chaotic time series, and in the long short-term memory network (LSTM) the combined vector is used to extract the temporal features. And then attention mechanism captures the key spatial-temporal features of chaotic time series. Finally, the prediction results are computed by using spatial-temporal features. To verify the prediction performance of the proposed hybrid model, it is used to predict the Logistic, Lorenz and sunspot chaotic time series. Four kinds of error criteria and model running times are used to evaluate the performance of predictive model. The proposed model is compared with hybrid CNN-LSTM model, the single CNN and LSTM network model and least squares support vector machine(LSSVM), and the experimental results show that the proposed hybrid model has a higher prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助西营采纳,获得10
3秒前
小越越完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
10秒前
hxd发布了新的文献求助10
10秒前
上官若男应助短腿萝莉采纳,获得10
11秒前
13秒前
走弓发布了新的文献求助10
13秒前
15秒前
16秒前
汉堡包应助shim采纳,获得10
16秒前
17秒前
18秒前
饼子发布了新的文献求助10
18秒前
20秒前
宜醉宜游宜睡应助niuniu采纳,获得10
20秒前
拨云见日发布了新的文献求助10
21秒前
亓官煜之发布了新的文献求助10
22秒前
Jasper应助走弓采纳,获得10
23秒前
23秒前
24秒前
香蕉君达发布了新的文献求助10
24秒前
25秒前
CodeCraft应助KEHUGE采纳,获得10
25秒前
甜美采萱发布了新的文献求助10
26秒前
言辞完成签到,获得积分10
27秒前
InvokeR发布了新的文献求助30
27秒前
Ava应助明亮的以蓝采纳,获得10
27秒前
传奇3应助NolloN采纳,获得10
28秒前
赘婿应助欢呼的傲旋采纳,获得10
28秒前
不许放羊完成签到 ,获得积分10
28秒前
29秒前
短腿萝莉发布了新的文献求助10
29秒前
Kenzonvay发布了新的文献求助10
30秒前
heart发布了新的文献求助10
30秒前
31秒前
汉堡包应助yduan采纳,获得10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248499
求助须知:如何正确求助?哪些是违规求助? 2891839
关于积分的说明 8268971
捐赠科研通 2559871
什么是DOI,文献DOI怎么找? 1388724
科研通“疑难数据库(出版商)”最低求助积分说明 650815
邀请新用户注册赠送积分活动 627782