清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of chaotic time series using hybrid neural network and attention mechanism

计算机科学 Softmax函数 混乱的 人工神经网络 人工智能 时间序列 系列(地层学) 循环神经网络 卷积神经网络 模式识别(心理学) 算法 机器学习 古生物学 生物
作者
Weijian Huang,Yongtao Li,Yuan Huang
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:70 (1): 010501-010501 被引量:25
标识
DOI:10.7498/aps.70.20200899
摘要

Chaotic time series forecasting has been widely used in various domains, and the accurate predicting of the chaotic time series plays a critical role in many public events. Recently, various deep learning algorithms have been used to forecast chaotic time series and achieved good prediction performance. In order to improve the prediction accuracy of chaotic time series, a prediction model (Att-CNN-LSTM) is proposed based on hybrid neural network and attention mechanism. In this paper, the convolutional neural network (CNN) and long short-term memory (LSTM) are used to form a hybrid neural network. In addition, a attention model with <i>softmax</i> activation function is designed to extract the key features. Firstly, phase space reconstruction and data normalization are performed on a chaotic time series, then convolutional neural network (CNN) is used to extract the spatial features of the reconstructed phase space, then the features extracted by CNN are combined with the original chaotic time series, and in the long short-term memory network (LSTM) the combined vector is used to extract the temporal features. And then attention mechanism captures the key spatial-temporal features of chaotic time series. Finally, the prediction results are computed by using spatial-temporal features. To verify the prediction performance of the proposed hybrid model, it is used to predict the Logistic, Lorenz and sunspot chaotic time series. Four kinds of error criteria and model running times are used to evaluate the performance of predictive model. The proposed model is compared with hybrid CNN-LSTM model, the single CNN and LSTM network model and least squares support vector machine(LSSVM), and the experimental results show that the proposed hybrid model has a higher prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
38秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
魔幻的从丹完成签到 ,获得积分10
1分钟前
corleeang完成签到 ,获得积分10
1分钟前
1分钟前
tt完成签到,获得积分10
1分钟前
一二发布了新的文献求助10
1分钟前
兰先生完成签到 ,获得积分10
2分钟前
一二完成签到,获得积分10
2分钟前
wwe完成签到,获得积分10
2分钟前
2分钟前
打打应助lawang采纳,获得10
2分钟前
李健应助lawang采纳,获得10
2分钟前
Ava应助lawang采纳,获得10
2分钟前
Akim应助lawang采纳,获得10
2分钟前
SciGPT应助lawang采纳,获得10
2分钟前
CodeCraft应助lawang采纳,获得10
2分钟前
Akim应助lawang采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
安详的亦丝完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
Lucas应助lawang采纳,获得10
3分钟前
无花果应助lawang采纳,获得30
3分钟前
Akim应助lawang采纳,获得10
3分钟前
丘比特应助lawang采纳,获得10
3分钟前
在水一方应助lawang采纳,获得10
3分钟前
小蘑菇应助lawang采纳,获得10
3分钟前
所所应助lawang采纳,获得10
3分钟前
共享精神应助lawang采纳,获得10
3分钟前
小马甲应助lawang采纳,获得30
3分钟前
今后应助lawang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658175
求助须知:如何正确求助?哪些是违规求助? 4818012
关于积分的说明 15080950
捐赠科研通 4816522
什么是DOI,文献DOI怎么找? 2577459
邀请新用户注册赠送积分活动 1532399
关于科研通互助平台的介绍 1491024