BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification

相似性(几何) 模式识别(心理学) 图像(数学) 弹丸 深度学习 卷积神经网络 情报检索 特征(语言学)
作者
Xiaoxu Li,Jijie Wu,Zhuo Sun,Zhanyu Ma,Jie Cao,Jing-Hao Xue
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:2
标识
DOI:10.1109/tip.2020.3043128
摘要

Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called \textit{Bi-Similarity Network} (\textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: this https URL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zzzzz关注了科研通微信公众号
2秒前
动听紫文发布了新的文献求助50
2秒前
ZJX应助能干的寒凡采纳,获得10
4秒前
4秒前
kwai发布了新的文献求助30
5秒前
乐观伟诚发布了新的文献求助10
6秒前
暴走小面包完成签到,获得积分10
7秒前
汉堡包应助暖暖采纳,获得10
7秒前
YIYI完成签到,获得积分10
7秒前
Jaime完成签到,获得积分10
7秒前
ChenYX发布了新的文献求助30
8秒前
8秒前
下次一定完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
小李老博完成签到,获得积分10
12秒前
zzzzz发布了新的文献求助10
13秒前
CodeCraft应助傲娇以寒采纳,获得10
15秒前
伶俐乌发布了新的文献求助10
15秒前
鱼鱼色完成签到 ,获得积分10
16秒前
16秒前
16秒前
说话要严谨完成签到 ,获得积分10
16秒前
yuanying发布了新的文献求助10
17秒前
贝贝发布了新的文献求助20
17秒前
暖暖完成签到,获得积分20
17秒前
19秒前
19秒前
20秒前
21秒前
21秒前
21秒前
21秒前
枫叶随想应助一杯冰美式采纳,获得10
22秒前
健忘怜雪发布了新的文献求助30
23秒前
ding应助ChenYX采纳,获得10
23秒前
钙帮弟子完成签到,获得积分10
23秒前
ppxx发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658