BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification

相似性(几何) 模式识别(心理学) 图像(数学) 弹丸 深度学习 卷积神经网络 情报检索 特征(语言学)
作者
Xiaoxu Li,Jijie Wu,Zhuo Sun,Zhanyu Ma,Jie Cao,Jing-Hao Xue
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:2
标识
DOI:10.1109/tip.2020.3043128
摘要

Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called \textit{Bi-Similarity Network} (\textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: this https URL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mario完成签到,获得积分10
刚刚
2秒前
朝阳CAAS完成签到,获得积分10
3秒前
GEYUAN完成签到 ,获得积分10
3秒前
3秒前
科研通AI2S应助11采纳,获得10
4秒前
5秒前
6秒前
8秒前
NexusExplorer应助CIBww采纳,获得10
9秒前
等豆宝儿完成签到,获得积分10
9秒前
9秒前
tianzml0应助Mario采纳,获得10
9秒前
华仔应助八百标兵采纳,获得10
11秒前
贝拉发布了新的文献求助10
13秒前
13秒前
烟花应助刻苦的雁荷采纳,获得10
14秒前
LGH完成签到 ,获得积分10
14秒前
FANGQUAN完成签到 ,获得积分10
14秒前
14秒前
隐形曼青应助WHY采纳,获得10
15秒前
麻溜儿完成签到,获得积分20
16秒前
半信美玉完成签到,获得积分10
17秒前
18秒前
朝阳CAAS发布了新的文献求助10
19秒前
19秒前
蜗牛完成签到,获得积分10
19秒前
22秒前
晴光完成签到 ,获得积分10
22秒前
爱听歌的南珍完成签到,获得积分10
23秒前
羔羊完成签到 ,获得积分10
23秒前
25秒前
314gjj完成签到,获得积分10
25秒前
英俊的铭应助i1采纳,获得10
26秒前
魏小梅完成签到,获得积分10
26秒前
万能图书馆应助归诚采纳,获得10
27秒前
gadfsjkdahf发布了新的文献求助10
27秒前
贝拉完成签到 ,获得积分10
28秒前
黄焖鸡完成签到 ,获得积分10
28秒前
天天开心完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012