BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification

相似性(几何) 模式识别(心理学) 图像(数学) 弹丸 深度学习 卷积神经网络 情报检索 特征(语言学)
作者
Xiaoxu Li,Jijie Wu,Zhuo Sun,Zhanyu Ma,Jie Cao,Jing-Hao Xue
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:2
标识
DOI:10.1109/tip.2020.3043128
摘要

Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called \textit{Bi-Similarity Network} (\textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: this https URL
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的伯云完成签到,获得积分10
1秒前
ylq关闭了ylq文献求助
1秒前
Jasper应助vk采纳,获得10
1秒前
小鱼鱼Fish完成签到,获得积分10
2秒前
hz_sz完成签到,获得积分10
2秒前
3秒前
十万个吃什么完成签到,获得积分10
4秒前
qq发布了新的文献求助10
4秒前
研友_8QyXr8完成签到,获得积分10
5秒前
8秒前
冗余完成签到,获得积分10
9秒前
9秒前
英俊的铭应助xuemengyao采纳,获得10
10秒前
浮生如梦发布了新的文献求助10
10秒前
12秒前
wangzhao完成签到,获得积分10
12秒前
light发布了新的文献求助30
13秒前
才下眉头完成签到,获得积分10
14秒前
叶95发布了新的文献求助10
14秒前
小蘑菇应助狂野世立采纳,获得10
15秒前
15秒前
Jiro完成签到,获得积分10
16秒前
小小旭呀发布了新的文献求助10
17秒前
18秒前
shisui发布了新的文献求助20
18秒前
123完成签到,获得积分10
19秒前
wanci应助light采纳,获得30
19秒前
兴奋小林完成签到,获得积分10
20秒前
qq完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
Lucas应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
谢许杯商应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014