Privacy and Robustness in Federated Learning: Attacks and Defenses

稳健性(进化) 计算机科学 计算机安全 多学科方法 信息隐私 联合学习 设计隐私 互联网隐私 数据科学 人工智能 政治学 生物化学 基因 化学 法学
作者
Lingjuan Lyu,Han Yu,Xingjun Ma,Chen Chen,Lichao Sun,Jun Zhao,Qiang Yang,Philip S. Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:108
标识
DOI:10.1109/tnnls.2022.3216981
摘要

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continues to thrive in this new reality. Existing FL protocol designs have been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this article, we conduct a comprehensive survey on privacy and robustness in FL over the past five years. Through a concise introduction to the concept of FL and a unique taxonomy covering: 1) threat models; 2) privacy attacks and defenses; and 3) poisoning attacks and defenses, we provide an accessible review of this important topic. We highlight the intuitions, key techniques, and fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions toward robust and privacy-preserving FL, and their interplays with the multidisciplinary goals of FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助Lis采纳,获得10
1秒前
无语发布了新的文献求助10
1秒前
共享精神应助Ding采纳,获得10
2秒前
脑洞疼应助美丽仙人掌采纳,获得10
2秒前
mrscoma完成签到,获得积分10
3秒前
4秒前
深情安青应助研友_想想采纳,获得10
5秒前
louis关注了科研通微信公众号
6秒前
limengran发布了新的文献求助10
6秒前
6秒前
菘蓝泽蓼完成签到,获得积分10
7秒前
李健应助洁净白容采纳,获得10
8秒前
8秒前
简单冰巧完成签到,获得积分10
9秒前
damai发布了新的文献求助10
10秒前
爆米花应助YingjiaHu采纳,获得10
10秒前
瘦瘦忆南发布了新的文献求助10
10秒前
orixero应助温暖的数据线采纳,获得10
11秒前
12秒前
12秒前
12秒前
13秒前
cy完成签到,获得积分10
13秒前
14秒前
14秒前
hgy完成签到 ,获得积分10
14秒前
14秒前
Ding发布了新的文献求助10
14秒前
ding应助露露采纳,获得10
15秒前
17秒前
Newky发布了新的文献求助10
18秒前
研友_想想发布了新的文献求助10
18秒前
JamesPei应助超级的小蚂蚁采纳,获得10
18秒前
lzw123456发布了新的文献求助10
18秒前
19秒前
洁净白容发布了新的文献求助10
19秒前
依米发布了新的文献求助10
19秒前
Hanayu完成签到 ,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542