材料科学
晶界
微晶
可塑性
钛
脆性
复合材料
钛合金
应变率
断裂力学
冶金
微观结构
合金
作者
Junye Li,Liguang Dong,Hongcai Xie,Wenqing Meng,Jingran Zhang,Weihong Zhao
标识
DOI:10.1016/j.mtcomm.2020.101837
摘要
In order to explore the nanoscale mechanism of nanocrack propagation in polycrystalline titanium under tensile condition, molecular dynamics model of polycrystalline titanium was established. The propagation mechanism of nanocrack in polycrystalline titanium was analyzed under different crack locations, strain rates and temperatures. It reveals the influence of various factors on the nanocrack propagation process. It is found that the fracture mode of polycrystalline titanium at low temperature is mainly brittle cleavage, and the presence of grain boundary makes the material brittle. At room temperature, the material plasticity increases. This makes the crack tip passivate and the crack growth rate slow down. With the increase of the strain rate, the crack propagation speed decreases, which is related to the plasticity enhancement of the material under high strain rate. No matter the crack is in the grain boundary or the grain inner, it will eventually expand along the grain boundary, and the grain boundary plays a guiding role in the crack propagation direction.
科研通智能强力驱动
Strongly Powered by AbleSci AI