Assimilation of Radar and Cloud-to-Ground Lightning Data Using WRF-3DVar Combined with the Physical Initialization Method—A Case Study of a Mesoscale Convective System

数据同化 雷达 气象学 初始化 中尺度气象学 天气研究与预报模式 临近预报 气象雷达 环境科学 降水 对流 遥感 恶劣天气 定量降水预报 计算机科学 风暴 地质学 地理 电信 程序设计语言
作者
Ruhui Gan,Yi Yang,Qian Xie,Erliang Lin,Ying Wang,Peng Liu
出处
期刊:Journal of Meteorological Research [Springer Nature]
卷期号:35 (2): 329-342 被引量:9
标识
DOI:10.1007/s13351-021-0092-4
摘要

Radar data, which have incomparably high temporal and spatial resolution, and lightning data, which are great indicators of severe convection, have been used to improve the initial field and increase the accuracies of nowcasting and short-term forecasting. Physical initialization combined with the three-dimensional variational data assimilation method (PI3DVar_rh) is used in this study to assimilate two kinds of observation data simultaneously, in which radar data are dominant and lightning data are introduced as constraint conditions. In this way, the advantages of dual observations are adopted. To verify the effect of assimilating radar and lightning data using the PI3DVar_rh method, a severe convective activity that occurred on 5 June 2009 is utilized, and five assimilation experiments are designed based on the Weather Research and Forecasting (WRF) model. The assimilation of radar and lightning data results in moister conditions below cloud top, where severe convection occurs; thus, wet forecasts are generated in this study. The results show that the control experiment has poor prediction accuracy. Radar data assimilation using the PI3DVar_rh method improves the location prediction of reflectivity and precipitation, especially in the last 3-h prediction, although the reflectivity and precipitation are notably overestimated. The introduction of lightning data effectively thins the radar data, reduces the overestimates in radar data assimilation, and results in better spatial pattern and intensity predictions. The predicted graupel mixing ratio is closer to the distribution of the observed lightning, which can provide more accurate lightning warning information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜耳机完成签到 ,获得积分10
刚刚
LL完成签到 ,获得积分10
刚刚
swswsw完成签到,获得积分20
1秒前
zwzh发布了新的文献求助10
1秒前
迷人的勒完成签到,获得积分10
1秒前
深情安青应助qqqqq采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
万能图书馆应助12opi采纳,获得10
5秒前
阳光问雁完成签到 ,获得积分10
5秒前
UPUP0707完成签到,获得积分10
7秒前
冷酷孤风完成签到,获得积分10
7秒前
愉快冰海发布了新的文献求助10
9秒前
在水一方应助sss采纳,获得10
10秒前
10秒前
12秒前
充电宝应助PlanetaryLayer采纳,获得10
12秒前
LiLi完成签到,获得积分10
13秒前
albert666发布了新的文献求助20
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
卡皮巴拉发布了新的文献求助10
16秒前
专注若蕊完成签到,获得积分10
17秒前
呓语眠眠完成签到,获得积分10
17秒前
Leon完成签到,获得积分10
20秒前
knoren完成签到,获得积分20
20秒前
123完成签到,获得积分10
21秒前
22秒前
归尘发布了新的文献求助30
22秒前
Akim应助Allen采纳,获得10
23秒前
赘婿应助hhc采纳,获得10
26秒前
26秒前
27秒前
说话的月亮完成签到,获得积分10
27秒前
JamesPei应助卡皮巴拉采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
百香果发布了新的文献求助10
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761261
求助须知:如何正确求助?哪些是违规求助? 5528834
关于积分的说明 15399228
捐赠科研通 4897799
什么是DOI,文献DOI怎么找? 2634456
邀请新用户注册赠送积分活动 1582550
关于科研通互助平台的介绍 1537841