Assimilation of Radar and Cloud-to-Ground Lightning Data Using WRF-3DVar Combined with the Physical Initialization Method—A Case Study of a Mesoscale Convective System

数据同化 雷达 气象学 初始化 中尺度气象学 天气研究与预报模式 临近预报 气象雷达 环境科学 降水 对流 遥感 恶劣天气 定量降水预报 计算机科学 风暴 地质学 地理 电信 程序设计语言
作者
Ruhui Gan,Yi Yang,Qian Xie,Erliang Lin,Ying Wang,Peng Liu
出处
期刊:Journal of Meteorological Research [Springer Nature]
卷期号:35 (2): 329-342 被引量:9
标识
DOI:10.1007/s13351-021-0092-4
摘要

Radar data, which have incomparably high temporal and spatial resolution, and lightning data, which are great indicators of severe convection, have been used to improve the initial field and increase the accuracies of nowcasting and short-term forecasting. Physical initialization combined with the three-dimensional variational data assimilation method (PI3DVar_rh) is used in this study to assimilate two kinds of observation data simultaneously, in which radar data are dominant and lightning data are introduced as constraint conditions. In this way, the advantages of dual observations are adopted. To verify the effect of assimilating radar and lightning data using the PI3DVar_rh method, a severe convective activity that occurred on 5 June 2009 is utilized, and five assimilation experiments are designed based on the Weather Research and Forecasting (WRF) model. The assimilation of radar and lightning data results in moister conditions below cloud top, where severe convection occurs; thus, wet forecasts are generated in this study. The results show that the control experiment has poor prediction accuracy. Radar data assimilation using the PI3DVar_rh method improves the location prediction of reflectivity and precipitation, especially in the last 3-h prediction, although the reflectivity and precipitation are notably overestimated. The introduction of lightning data effectively thins the radar data, reduces the overestimates in radar data assimilation, and results in better spatial pattern and intensity predictions. The predicted graupel mixing ratio is closer to the distribution of the observed lightning, which can provide more accurate lightning warning information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spc68完成签到,获得积分10
1秒前
Brave完成签到,获得积分10
1秒前
Ava应助等乙天采纳,获得10
2秒前
光亮笑柳发布了新的文献求助10
2秒前
2秒前
明亮百川发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ATTENTION完成签到,获得积分10
4秒前
Sere完成签到,获得积分10
5秒前
浮游应助yyj采纳,获得10
5秒前
5秒前
历史真相完成签到,获得积分20
6秒前
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
xiaoxiao1992应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
元昭诩应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Stella应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
yznfly应助科研通管家采纳,获得20
7秒前
SJJ应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563294
求助须知:如何正确求助?哪些是违规求助? 4648146
关于积分的说明 14683749
捐赠科研通 4590165
什么是DOI,文献DOI怎么找? 2518308
邀请新用户注册赠送积分活动 1491038
关于科研通互助平台的介绍 1462325