Assimilation of Radar and Cloud-to-Ground Lightning Data Using WRF-3DVar Combined with the Physical Initialization Method—A Case Study of a Mesoscale Convective System

数据同化 雷达 气象学 初始化 中尺度气象学 天气研究与预报模式 临近预报 气象雷达 环境科学 降水 对流 遥感 恶劣天气 定量降水预报 计算机科学 风暴 地质学 地理 电信 程序设计语言
作者
Ruhui Gan,Yi Yang,Qian Xie,Erliang Lin,Ying Wang,Peng Liu
出处
期刊:Journal of Meteorological Research [Springer Nature]
卷期号:35 (2): 329-342 被引量:8
标识
DOI:10.1007/s13351-021-0092-4
摘要

Radar data, which have incomparably high temporal and spatial resolution, and lightning data, which are great indicators of severe convection, have been used to improve the initial field and increase the accuracies of nowcasting and short-term forecasting. Physical initialization combined with the three-dimensional variational data assimilation method (PI3DVar_rh) is used in this study to assimilate two kinds of observation data simultaneously, in which radar data are dominant and lightning data are introduced as constraint conditions. In this way, the advantages of dual observations are adopted. To verify the effect of assimilating radar and lightning data using the PI3DVar_rh method, a severe convective activity that occurred on 5 June 2009 is utilized, and five assimilation experiments are designed based on the Weather Research and Forecasting (WRF) model. The assimilation of radar and lightning data results in moister conditions below cloud top, where severe convection occurs; thus, wet forecasts are generated in this study. The results show that the control experiment has poor prediction accuracy. Radar data assimilation using the PI3DVar_rh method improves the location prediction of reflectivity and precipitation, especially in the last 3-h prediction, although the reflectivity and precipitation are notably overestimated. The introduction of lightning data effectively thins the radar data, reduces the overestimates in radar data assimilation, and results in better spatial pattern and intensity predictions. The predicted graupel mixing ratio is closer to the distribution of the observed lightning, which can provide more accurate lightning warning information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
卢健辉发布了新的文献求助10
1秒前
2秒前
cookie完成签到,获得积分10
2秒前
JMZ完成签到 ,获得积分10
4秒前
英姑应助星星采纳,获得10
4秒前
spurs17发布了新的文献求助30
5秒前
LH完成签到,获得积分10
5秒前
CodeCraft应助Island采纳,获得10
6秒前
annis完成签到,获得积分10
6秒前
小黄应助asir_xw采纳,获得10
7秒前
认真的rain完成签到,获得积分10
7秒前
糊涂的小伙完成签到,获得积分10
8秒前
芒果豆豆完成签到,获得积分10
8秒前
赎罪完成签到 ,获得积分10
9秒前
卢健辉完成签到,获得积分10
9秒前
9秒前
10秒前
负责的中道完成签到,获得积分10
11秒前
dyh6802发布了新的文献求助10
11秒前
儒雅八宝粥完成签到 ,获得积分10
11秒前
深情安青应助科研小菜鸟采纳,获得10
12秒前
姜灭绝完成签到,获得积分10
12秒前
三七二一完成签到,获得积分10
12秒前
13秒前
大方的寒烟完成签到,获得积分10
14秒前
16秒前
橘寄完成签到,获得积分10
16秒前
请叫我风吹麦浪应助mito采纳,获得10
17秒前
Smallhei完成签到,获得积分10
17秒前
18秒前
111111111完成签到,获得积分20
18秒前
19秒前
阿牛完成签到,获得积分20
20秒前
21秒前
111111111发布了新的文献求助10
22秒前
22秒前
22秒前
龙华之士完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808