Assimilation of Radar and Cloud-to-Ground Lightning Data Using WRF-3DVar Combined with the Physical Initialization Method—A Case Study of a Mesoscale Convective System

数据同化 雷达 气象学 初始化 中尺度气象学 天气研究与预报模式 临近预报 气象雷达 环境科学 降水 对流 遥感 恶劣天气 定量降水预报 计算机科学 风暴 地质学 地理 电信 程序设计语言
作者
Ruhui Gan,Yi Yang,Qian Xie,Erliang Lin,Ying Wang,Peng Liu
出处
期刊:Journal of Meteorological Research [Springer Science+Business Media]
卷期号:35 (2): 329-342 被引量:9
标识
DOI:10.1007/s13351-021-0092-4
摘要

Radar data, which have incomparably high temporal and spatial resolution, and lightning data, which are great indicators of severe convection, have been used to improve the initial field and increase the accuracies of nowcasting and short-term forecasting. Physical initialization combined with the three-dimensional variational data assimilation method (PI3DVar_rh) is used in this study to assimilate two kinds of observation data simultaneously, in which radar data are dominant and lightning data are introduced as constraint conditions. In this way, the advantages of dual observations are adopted. To verify the effect of assimilating radar and lightning data using the PI3DVar_rh method, a severe convective activity that occurred on 5 June 2009 is utilized, and five assimilation experiments are designed based on the Weather Research and Forecasting (WRF) model. The assimilation of radar and lightning data results in moister conditions below cloud top, where severe convection occurs; thus, wet forecasts are generated in this study. The results show that the control experiment has poor prediction accuracy. Radar data assimilation using the PI3DVar_rh method improves the location prediction of reflectivity and precipitation, especially in the last 3-h prediction, although the reflectivity and precipitation are notably overestimated. The introduction of lightning data effectively thins the radar data, reduces the overestimates in radar data assimilation, and results in better spatial pattern and intensity predictions. The predicted graupel mixing ratio is closer to the distribution of the observed lightning, which can provide more accurate lightning warning information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助贪玩元晴采纳,获得10
1秒前
大模型应助Faye采纳,获得10
1秒前
斯文败类应助贼佛的小德采纳,获得10
1秒前
科研通AI2S应助lixm采纳,获得10
2秒前
认真雅阳完成签到 ,获得积分10
2秒前
博弈春秋发布了新的文献求助10
2秒前
LANKE完成签到,获得积分10
3秒前
Theshiled完成签到,获得积分10
3秒前
Betty完成签到,获得积分10
3秒前
jie酱拌面应助wujiao采纳,获得10
3秒前
无花果应助花开米兰城采纳,获得10
3秒前
粱烨华发布了新的文献求助10
4秒前
4秒前
小刘先生完成签到,获得积分20
5秒前
酷酷的滕完成签到,获得积分10
5秒前
矮小的万声完成签到,获得积分20
5秒前
5秒前
6秒前
laber应助红红采纳,获得50
6秒前
7秒前
7秒前
KaiZI发布了新的文献求助10
7秒前
9秒前
冷酷天问完成签到,获得积分10
9秒前
9秒前
9秒前
鲨鱼关注了科研通微信公众号
9秒前
9秒前
pan关闭了pan文献求助
9秒前
WLWLW举报shine求助涉嫌违规
9秒前
呱呱完成签到,获得积分10
10秒前
xiyang发布了新的文献求助10
10秒前
10秒前
发如雪完成签到 ,获得积分10
11秒前
serein完成签到,获得积分10
11秒前
安平发布了新的文献求助10
12秒前
英俊的铭应助zimu012采纳,获得10
12秒前
tfldog完成签到,获得积分10
12秒前
GH发布了新的文献求助10
13秒前
小巧雪糕发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794