Learning tree-structured representation for 3D coronary artery segmentation

计算机科学 分割 判别式 人工智能 树形结构 模式识别(心理学) 结构化预测 树(集合论) 特征(语言学) 卷积神经网络 体素 数据结构 数学分析 哲学 语言学 程序设计语言 数学
作者
Bin Kong,Xin Wang,Junjie Bai,Yi Lu,Feng Gao,Kunlin Cao,Jun Xia,Qi Song,Youbing Yin
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:80: 101688-101688 被引量:71
标识
DOI:10.1016/j.compmedimag.2019.101688
摘要

Extensive research has been devoted to the segmentation of the coronary artery. However, owing to its complex anatomical structure, it is extremely challenging to automatically segment the coronary artery from 3D coronary computed tomography angiography (CCTA). Inspired by recent ideas to use tree-structured long short-term memory (LSTM) to model the underlying tree structures for NLP tasks, we propose a novel tree-structured convolutional gated recurrent unit (ConvGRU) model to learn the anatomical structure of the coronary artery. However, unlike tree-structured LSTM proposed for semantic relatedness as well as sentiment classification in natural language processing, our tree-structured ConvGRU model considers the local spatial correlations in the input data as the convolutions are used for input-to-state as well as state-to-state transitions, thus more suitable for image analysis. To conduct voxel-wise segmentation, a tree-structured segmentation framework is presented. It consists of a fully convolutional network (FCN) for multi-scale discriminative feature extraction and the final prediction, and a tree-structured ConvGRU layer for anatomical structure modeling. The proposed framework is extensively evaluated on four large-scale 3D CCTA dataset (the largest to the best of our knowledge), and experiments show that our method is more accurate as well as efficient, compared with other coronary artery segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王二萌完成签到 ,获得积分10
4秒前
丰那个丰发布了新的文献求助10
4秒前
断章完成签到 ,获得积分10
5秒前
顾矜应助缥缈飞鸟采纳,获得10
7秒前
7秒前
彭于晏应助raincoats采纳,获得15
8秒前
打打应助科研探索者采纳,获得10
8秒前
小墨墨发布了新的文献求助30
8秒前
落后的盼秋完成签到,获得积分10
9秒前
大方元风完成签到 ,获得积分10
10秒前
听风完成签到,获得积分20
11秒前
科研鸟发布了新的文献求助10
13秒前
15秒前
情怀应助落寞银耳汤采纳,获得10
15秒前
XXXXX完成签到,获得积分10
15秒前
FrozNineTivus完成签到,获得积分10
18秒前
听风发布了新的文献求助10
18秒前
CipherSage应助念姬采纳,获得10
22秒前
腼腆的梦蕊完成签到 ,获得积分10
22秒前
Neuro_dan完成签到,获得积分0
22秒前
pluto应助熊猫文文采纳,获得10
24秒前
无情的水蓉完成签到,获得积分10
24秒前
25秒前
JamesPei应助丰那个丰采纳,获得10
26秒前
酷波er应助000采纳,获得10
26秒前
yangjian完成签到 ,获得积分10
26秒前
27秒前
傅勃霖发布了新的文献求助10
28秒前
苹果秋灵发布了新的文献求助10
31秒前
张雷应助22222采纳,获得30
31秒前
XLL小绿绿发布了新的文献求助10
31秒前
所所应助YYY采纳,获得10
32秒前
33秒前
han完成签到 ,获得积分10
35秒前
an发布了新的文献求助10
36秒前
517843291完成签到,获得积分10
37秒前
38秒前
000发布了新的文献求助10
38秒前
41秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388