Learning tree-structured representation for 3D coronary artery segmentation

计算机科学 分割 判别式 人工智能 树形结构 模式识别(心理学) 结构化预测 树(集合论) 特征(语言学) 卷积神经网络 体素 数据结构 数学分析 哲学 语言学 程序设计语言 数学
作者
Bin Kong,Xin Wang,Junjie Bai,Yi Lu,Feng Gao,Kunlin Cao,Jun Xia,Qi Song,Youbing Yin
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:80: 101688-101688 被引量:71
标识
DOI:10.1016/j.compmedimag.2019.101688
摘要

Extensive research has been devoted to the segmentation of the coronary artery. However, owing to its complex anatomical structure, it is extremely challenging to automatically segment the coronary artery from 3D coronary computed tomography angiography (CCTA). Inspired by recent ideas to use tree-structured long short-term memory (LSTM) to model the underlying tree structures for NLP tasks, we propose a novel tree-structured convolutional gated recurrent unit (ConvGRU) model to learn the anatomical structure of the coronary artery. However, unlike tree-structured LSTM proposed for semantic relatedness as well as sentiment classification in natural language processing, our tree-structured ConvGRU model considers the local spatial correlations in the input data as the convolutions are used for input-to-state as well as state-to-state transitions, thus more suitable for image analysis. To conduct voxel-wise segmentation, a tree-structured segmentation framework is presented. It consists of a fully convolutional network (FCN) for multi-scale discriminative feature extraction and the final prediction, and a tree-structured ConvGRU layer for anatomical structure modeling. The proposed framework is extensively evaluated on four large-scale 3D CCTA dataset (the largest to the best of our knowledge), and experiments show that our method is more accurate as well as efficient, compared with other coronary artery segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃不饱星球球长应助Ma采纳,获得10
1秒前
strong.quite发布了新的文献求助10
2秒前
SciGPT应助JiegeSCI采纳,获得10
3秒前
lynn完成签到,获得积分10
4秒前
moyan完成签到 ,获得积分20
4秒前
4秒前
年轻新儿发布了新的文献求助10
4秒前
zshhay完成签到 ,获得积分10
4秒前
7秒前
7秒前
深情安青应助Bruce采纳,获得10
8秒前
乐乐应助Joker采纳,获得10
8秒前
Ellicas发布了新的文献求助10
8秒前
烟花应助裘依杨采纳,获得10
9秒前
9秒前
斯文冷亦完成签到 ,获得积分10
10秒前
11秒前
kento应助XZZH采纳,获得100
11秒前
开朗雅霜完成签到,获得积分10
11秒前
12秒前
Yvonne发布了新的文献求助150
12秒前
fifteen发布了新的文献求助10
13秒前
13秒前
小顾发布了新的文献求助10
14秒前
14秒前
轻松完成签到,获得积分10
15秒前
16秒前
ALGA发布了新的文献求助10
17秒前
平淡小猫发布了新的文献求助10
17秒前
研友_VZG7GZ应助壮观问寒采纳,获得10
18秒前
小闫发布了新的文献求助10
18秒前
Yi完成签到,获得积分20
19秒前
要吃烧饼么完成签到,获得积分10
20秒前
21秒前
22秒前
平常完成签到,获得积分10
23秒前
JamesPei应助DrZ采纳,获得10
25秒前
虞翩跹完成签到,获得积分10
25秒前
25秒前
NexusExplorer应助Qinjichao采纳,获得10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153887
求助须知:如何正确求助?哪些是违规求助? 2804911
关于积分的说明 7862225
捐赠科研通 2462979
什么是DOI,文献DOI怎么找? 1311070
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821