生物加工
组织工程
自愈水凝胶
3D生物打印
材料科学
纳米技术
再生医学
生物医学工程
明胶
计算机科学
化学
细胞
工程类
生物化学
高分子化学
作者
Claire Yu,Kathleen L. Miller,Jacob Schimelman,Pengrui Wang,Wei Zhu,Xuanyi Ma,Min Tang,Shangting You,Deepak Lakshmipathy,Frank He,Shaochen Chen
出处
期刊:Biomaterials
[Elsevier]
日期:2020-08-09
卷期号:258: 120294-120294
被引量:41
标识
DOI:10.1016/j.biomaterials.2020.120294
摘要
Recent advances in 3D bioprinting have transformed the tissue engineering landscape by enabling the controlled placement of cells, biomaterials, and bioactive agents for the biofabrication of living tissues and organs. However, the application of 3D bioprinting is limited by the availability of cytocompatible and printable biomaterials that recapitulate properties of native tissues. Here, we developed an integrated 3D projection bioprinting and orthogonal photoconjugation platform for precision tissue engineering of tailored microenvironments. By using a photoreactive thiol-ene gelatin bioink, soft hydrogels can be bioprinted into complex geometries and photopatterned with bioactive moieties in a rapid and scalable manner via digital light projection (DLP) technology. This enables localized modulation of biophysical properties such as stiffness and microarchitecture as well as precise control over spatial distribution and concentration of immobilized functional groups. As such, well-defined properties can be directly incorporated using a single platform to produce desired tissue-specific functions within bioprinted constructs. We demonstrated high viability of encapsulated endothelial cells and human cardiomyocytes using our dual process and fabricated tissue constructs functionalized with VEGF peptide mimics to induce guided endothelial cell growth for programmable vascularization. This work represents a pivotal step in engineering multifunctional constructs with unprecedented control, precision, and versatility for the rational design of biomimetic tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI