Toward Neurosubtypes in Autism

神经影像学 自闭症谱系障碍 范畴变量 心理学 鉴定(生物学) 脑功能 同种类的 认知心理学 选择(遗传算法) 自闭症 计算机科学 人工智能 神经科学 机器学习 发展心理学 生物 热力学 植物 物理
作者
Seok‐Jun Hong,Joshua T Vogelstein,Alessandro Gozzi,Boris C. Bernhardt,B.T. Thomas Yeo,Michael P. Milham,Adriana Di Martino
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:88 (1): 111-128 被引量:126
标识
DOI:10.1016/j.biopsych.2020.03.022
摘要

Abstract

There is a consensus that substantial heterogeneity underlies the neurobiology of autism spectrum disorder (ASD). As such, it has become increasingly clear that a dissection of variation at the molecular, cellular, and brain network domains is a prerequisite for identifying biomarkers. Neuroimaging has been widely used to characterize atypical brain patterns in ASD, although findings have varied across studies. This is due, at least in part, to a failure to account for neurobiological heterogeneity. Here, we summarize emerging data-driven efforts to delineate more homogeneous ASD subgroups at the level of brain structure and function—that is, neurosubtyping. We break this pursuit into key methodological steps: the selection of diagnostic samples, neuroimaging features, algorithms, and validation approaches. Although preliminary and methodologically diverse, current studies generally agree that at least 2 to 4 distinct ASD neurosubtypes may exist. Their identification improved symptom prediction and diagnostic label accuracy above and beyond group average comparisons. Yet, this nascent literature has shed light onto challenges and gaps. These include 1) the need for wider and more deeply transdiagnostic samples collected while minimizing artifacts (e.g., head motion), 2) quantitative and unbiased methods for feature selection and multimodal fusion, 3) greater emphasis on algorithms' ability to capture hybrid dimensional and categorical models of ASD, and 4) systematic independent replications and validations that integrate different units of analyses across multiple scales. Solutions aimed to address these challenges and gaps are discussed for future avenues leading toward a comprehensive understanding of the mechanisms underlying ASD heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助二二二采纳,获得10
刚刚
赘婿应助尘林采纳,获得10
1秒前
HPP123完成签到,获得积分10
3秒前
4秒前
YYJ25发布了新的文献求助10
5秒前
liyuchen发布了新的文献求助10
5秒前
侦察兵发布了新的文献求助10
5秒前
7秒前
Owen应助TT采纳,获得10
7秒前
kid1912发布了新的文献求助50
7秒前
孙淳发布了新的文献求助10
11秒前
12秒前
12秒前
伯赏诗霜发布了新的文献求助10
12秒前
13秒前
13秒前
程哲瀚完成签到,获得积分10
13秒前
Brennan完成签到,获得积分10
14秒前
15秒前
15秒前
笨笨善若发布了新的文献求助10
16秒前
16秒前
17秒前
樘樘完成签到,获得积分10
17秒前
一个有点长的序完成签到 ,获得积分10
18秒前
孙淳完成签到,获得积分10
19秒前
19秒前
YYJ25发布了新的文献求助10
20秒前
Jzhang应助tmpstlml采纳,获得10
21秒前
微笑的南露完成签到 ,获得积分10
21秒前
豌豆关注了科研通微信公众号
21秒前
24秒前
笨笨善若完成签到,获得积分10
26秒前
hs完成签到,获得积分20
26秒前
ZHANGMANLI0422完成签到,获得积分10
26秒前
susu关注了科研通微信公众号
28秒前
DYuH23完成签到,获得积分10
29秒前
30秒前
爱静静应助DHL采纳,获得10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849