破骨细胞
骨重建
骨吸收
成骨细胞
内分泌学
内科学
兰克尔
骨质疏松症
去卵巢大鼠
骨重建期
化学
骨细胞
Wnt信号通路
骨保护素
运行x2
骨细胞
细胞生物学
信号转导
激活剂(遗传学)
医学
受体
生物
雌激素
生物化学
体外
作者
Yan-man Zhou,Yuying Yang,Yixuan Jing,Tian-Jiao Yuan,Li‐hao Sun,Bei Tao,Jianmin Liu,Hongyan Zhao
摘要
ABSTRACT Bone remodeling is dynamic and is tightly regulated through bone resorption dominated by osteoclasts and bone formation dominated by osteoblasts. Imbalances in this process can cause various pathological conditions, such as osteoporosis. Bone morphogenetic protein 9 (BMP9), a biomolecule produced and secreted by the liver, has many pharmacological effects, including anti-liver fibrosis, antitumor, anti-heart failure, and antidiabetic activities. However, the effects of BMP9 on the regulation of osteoblast and osteoclast functions and the underlying molecular mechanism(s) have not yet been investigated. In this study, BMP9 increased the expression of osteoblastogenic gene markers, such as ALP, Cola1, OCN, RUNX2, and OSX, and ALP activity in MC3T3-E1 cells by upregulating LGR6 and activating the Wnt/β-catenin pathway. BMP9 also suppressed receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) by inhibiting the Akt-NF-κB-NFATc1 pathway. More importantly, in an ovariectomy (OVX) mouse model, BMP9 attenuated bone loss and improved bone biomechanical properties in vivo by increasing bone-forming activity and suppressing bone resorption activity. Accordingly, our current work highlights the dual regulatory effects that BMP9 exerts on bone remodeling by promoting bone anabolic activity and inhibiting osteoclast differentiation in OVX mice. © 2020 American Society for Bone and Mineral Research.
科研通智能强力驱动
Strongly Powered by AbleSci AI