This paper proposes a deep convolutional neural network-based low-light image enhancement method. In order to adaptively enhance the image brightness, a convolutional neural network with convolutional modules is designed. Lowlight image is firstly down-sampled into sub-images. Then an illumination map is obtained from the input image to provide additional information to the network. The network works on a tensor that consists of sub-images and illumination map, achieving a good performance in brightness increasing and structure preservation. The enhanced result is reconstructed from the output sub-images. Experimental results demonstrate the effectiveness of the proposed method in low-light image enhancement.