清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的香之完成签到 ,获得积分10
3秒前
小昕思完成签到 ,获得积分10
10秒前
随心所欲完成签到 ,获得积分10
13秒前
星辰大海应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
心想事成完成签到 ,获得积分10
21秒前
如意2023完成签到 ,获得积分10
21秒前
mochalv123完成签到 ,获得积分10
26秒前
空儒完成签到 ,获得积分10
26秒前
sll完成签到 ,获得积分10
31秒前
坦率的从波完成签到 ,获得积分10
51秒前
yan完成签到,获得积分10
58秒前
白柏233完成签到,获得积分10
59秒前
hz_sz完成签到,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
困困困完成签到 ,获得积分10
1分钟前
ZhaoZitong发布了新的文献求助10
1分钟前
mumu发布了新的文献求助10
1分钟前
1分钟前
alanbike完成签到,获得积分10
1分钟前
unicornmed发布了新的文献求助10
1分钟前
mumu完成签到,获得积分10
1分钟前
沈呆呆完成签到,获得积分10
1分钟前
赵李锋完成签到,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
启程完成签到 ,获得积分10
2分钟前
千帆破浪完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
飞云完成签到 ,获得积分10
2分钟前
LOST完成签到 ,获得积分10
2分钟前
huiluowork完成签到 ,获得积分10
3分钟前
康康完成签到 ,获得积分10
3分钟前
小果完成签到 ,获得积分10
3分钟前
独特易形完成签到 ,获得积分10
4分钟前
nojego完成签到,获得积分10
4分钟前
harden9159完成签到,获得积分10
4分钟前
jlw完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612722
求助须知:如何正确求助?哪些是违规求助? 4017820
关于积分的说明 12436745
捐赠科研通 3700015
什么是DOI,文献DOI怎么找? 2040543
邀请新用户注册赠送积分活动 1073321
科研通“疑难数据库(出版商)”最低求助积分说明 956976