Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶子发布了新的文献求助10
1秒前
1秒前
1秒前
13831555290完成签到,获得积分10
1秒前
tyZhang完成签到,获得积分10
2秒前
xierwalasi完成签到,获得积分10
2秒前
下次一定完成签到,获得积分10
2秒前
guijiu完成签到,获得积分10
2秒前
qinggui127完成签到 ,获得积分10
3秒前
Nariy完成签到,获得积分10
3秒前
搞怪城发布了新的文献求助10
3秒前
从容雨筠发布了新的文献求助10
4秒前
小猪猪完成签到,获得积分10
5秒前
自觉士萧完成签到,获得积分10
5秒前
认真丹亦完成签到 ,获得积分10
7秒前
大胆帅哥发布了新的文献求助10
7秒前
7秒前
7秒前
合适尔蝶发布了新的文献求助10
7秒前
8秒前
8秒前
秋之月完成签到,获得积分20
9秒前
仰望星空扭到腰完成签到,获得积分10
9秒前
充电宝应助赵yy采纳,获得10
10秒前
federish完成签到 ,获得积分10
10秒前
10秒前
整齐豆芽发布了新的文献求助10
12秒前
西瓜太郎完成签到,获得积分20
12秒前
12秒前
雪白山蝶完成签到,获得积分10
13秒前
星辰大海应助舒适新梅采纳,获得10
13秒前
369发布了新的文献求助10
14秒前
Erich完成签到 ,获得积分10
14秒前
悦耳黑夜完成签到,获得积分10
14秒前
火星上的半梅完成签到,获得积分10
15秒前
科研通AI6应助翠瓜搞科研采纳,获得10
15秒前
15秒前
雪白山蝶发布了新的文献求助10
15秒前
陈军完成签到,获得积分0
16秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459