Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
刚刚
刚刚
刚刚
yecheng发布了新的文献求助10
1秒前
东山发布了新的文献求助10
1秒前
小马甲应助Phil丶采纳,获得10
1秒前
1秒前
牛牛牛应助WS采纳,获得10
1秒前
1秒前
传奇3应助开始游戏55采纳,获得10
1秒前
大萝贝完成签到,获得积分10
1秒前
情怀应助swj采纳,获得10
1秒前
竹万万完成签到,获得积分10
2秒前
潇飞天下完成签到,获得积分10
2秒前
1235完成签到,获得积分10
2秒前
Distance完成签到,获得积分10
2秒前
宋娣完成签到,获得积分20
2秒前
ling完成签到,获得积分10
2秒前
松子儿hhh完成签到,获得积分10
3秒前
lisier完成签到,获得积分20
3秒前
Buduan发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
无限行之发布了新的文献求助10
6秒前
研友_LX06oL完成签到,获得积分10
6秒前
6秒前
1235发布了新的文献求助20
6秒前
激动的半梦完成签到,获得积分10
6秒前
6秒前
潇飞天下发布了新的文献求助10
6秒前
6秒前
ws完成签到,获得积分10
6秒前
兔BF完成签到,获得积分10
7秒前
tttttt完成签到,获得积分10
7秒前
辛勤的初晴完成签到,获得积分10
7秒前
cruise应助无私的颤采纳,获得30
7秒前
酷波er应助摆烂小鱼鱼采纳,获得10
7秒前
半胱氨酸发布了新的文献求助10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060