Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taotao完成签到,获得积分20
刚刚
不知道发布了新的文献求助10
1秒前
2秒前
2秒前
sciDoge完成签到,获得积分10
3秒前
超级安荷发布了新的文献求助10
3秒前
4秒前
一只耳发布了新的文献求助10
5秒前
glacier发布了新的文献求助10
7秒前
KYDZZ应助知世耶采纳,获得10
8秒前
9秒前
小蘑菇应助sun采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
科研小菜发布了新的文献求助20
15秒前
shhoing应助Bill采纳,获得10
15秒前
16秒前
123完成签到 ,获得积分10
16秒前
KUN完成签到,获得积分10
17秒前
liberal完成签到,获得积分10
18秒前
18秒前
18秒前
燕双鹰完成签到,获得积分10
19秒前
hahaha完成签到,获得积分20
19秒前
丘比特应助fffgz采纳,获得10
19秒前
19秒前
熊风发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
hahaha发布了新的文献求助10
22秒前
陈帅洲发布了新的文献求助10
23秒前
本宫还能学完成签到,获得积分10
24秒前
领导范儿应助成就的涵菡采纳,获得10
24秒前
lingjunjie发布了新的文献求助10
24秒前
麦子完成签到,获得积分10
25秒前
sun发布了新的文献求助10
26秒前
123456发布了新的文献求助10
26秒前
abu发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937