清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
披着羊皮的狼完成签到 ,获得积分10
18秒前
袁建波完成签到,获得积分10
41秒前
Spring完成签到,获得积分10
44秒前
1分钟前
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
把饭拼好给你完成签到 ,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
dynamoo完成签到,获得积分10
2分钟前
2分钟前
年轻绮波完成签到,获得积分10
2分钟前
123发布了新的文献求助10
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
yueyueyue完成签到,获得积分10
2分钟前
123完成签到,获得积分10
2分钟前
Yini应助科研通管家采纳,获得20
3分钟前
昏睡的妙梦完成签到,获得积分10
3分钟前
3分钟前
ukmy发布了新的文献求助10
3分钟前
桐桐应助ukmy采纳,获得10
3分钟前
竹青完成签到 ,获得积分10
4分钟前
4分钟前
小吴发布了新的文献求助10
4分钟前
zzz完成签到,获得积分10
4分钟前
4分钟前
Yini应助科研通管家采纳,获得30
5分钟前
完美世界应助科研通管家采纳,获得10
5分钟前
Yini应助科研通管家采纳,获得30
5分钟前
5分钟前
yujianhong发布了新的文献求助10
5分钟前
5分钟前
ukmy发布了新的文献求助10
5分钟前
海大鱼完成签到 ,获得积分10
5分钟前
酷波er应助ukmy采纳,获得10
5分钟前
紫熊完成签到,获得积分10
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
poki完成签到 ,获得积分10
6分钟前
科研通AI5应助要减肥中蓝采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065535
求助须知:如何正确求助?哪些是违规求助? 4288145
关于积分的说明 13359673
捐赠科研通 4106897
什么是DOI,文献DOI怎么找? 2248900
邀请新用户注册赠送积分活动 1254429
关于科研通互助平台的介绍 1186198