Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa发布了新的文献求助10
刚刚
娄志昊发布了新的文献求助10
1秒前
1秒前
章鱼哥完成签到,获得积分10
1秒前
1秒前
华仔应助大力哈密瓜采纳,获得10
1秒前
好吧不是完成签到,获得积分20
1秒前
iimayday完成签到,获得积分10
1秒前
2秒前
科研通AI6应助slsdy采纳,获得10
2秒前
完犊子完成签到,获得积分20
2秒前
老黄鱼完成签到,获得积分10
2秒前
TripleY完成签到,获得积分20
2秒前
zhouhanm完成签到,获得积分20
3秒前
xxw完成签到,获得积分10
3秒前
腼腆的赛君完成签到,获得积分10
3秒前
lennon完成签到,获得积分10
3秒前
栗龙博发布了新的文献求助10
4秒前
sarah完成签到,获得积分10
4秒前
tu123完成签到,获得积分10
5秒前
淡定枫完成签到,获得积分10
5秒前
朵拉A梦完成签到,获得积分10
5秒前
星星完成签到,获得积分10
5秒前
Emma完成签到,获得积分10
6秒前
zrd发布了新的文献求助10
6秒前
完犊子发布了新的文献求助10
6秒前
12111完成签到 ,获得积分10
6秒前
ljh1771完成签到,获得积分10
7秒前
少艾发布了新的文献求助30
7秒前
日立天上完成签到,获得积分10
7秒前
9秒前
冰魄落叶完成签到,获得积分10
10秒前
10秒前
aaa完成签到,获得积分20
10秒前
11秒前
Anna完成签到,获得积分10
11秒前
Gasoline.完成签到,获得积分20
11秒前
11秒前
流子完成签到,获得积分10
12秒前
axiyay完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315937
求助须知:如何正确求助?哪些是违规求助? 4458488
关于积分的说明 13870596
捐赠科研通 4348245
什么是DOI,文献DOI怎么找? 2388169
邀请新用户注册赠送积分活动 1382240
关于科研通互助平台的介绍 1351627