Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYLynn完成签到,获得积分10
刚刚
赘婿应助芋泥螺蛳猫采纳,获得10
1秒前
renjiu完成签到,获得积分10
1秒前
1秒前
rrr完成签到,获得积分10
1秒前
JACK完成签到,获得积分10
2秒前
科研欣路完成签到,获得积分10
2秒前
勿庸完成签到,获得积分10
2秒前
2秒前
王乐多完成签到 ,获得积分10
2秒前
锅里有两条鱼完成签到 ,获得积分10
2秒前
3秒前
姚断天发布了新的文献求助10
3秒前
CBY发布了新的文献求助10
3秒前
庞洋发布了新的文献求助10
3秒前
3秒前
hetao286发布了新的文献求助10
4秒前
zzc完成签到 ,获得积分10
4秒前
蔺建薇完成签到,获得积分10
4秒前
whatever举报求助违规成功
4秒前
Hungrylunch举报求助违规成功
4秒前
幕帆举报求助违规成功
4秒前
4秒前
4秒前
lanjq兰坚强完成签到,获得积分10
4秒前
夏昼关注了科研通微信公众号
5秒前
5秒前
RONG发布了新的文献求助10
5秒前
艺玲发布了新的文献求助10
5秒前
核桃发布了新的文献求助10
5秒前
橘络完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
研友_VZG7GZ应助gaos采纳,获得10
6秒前
内向青文发布了新的文献求助10
6秒前
克林沙星完成签到,获得积分10
6秒前
7秒前
杜嘟嘟发布了新的文献求助10
7秒前
kento驳回了欢欢应助
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740