Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 物理 几何学 数学 经典力学 纯数学 力矩(物理) 操作系统
作者
Vivek Jaiswal,Aaron Austin Brown,Mengxi Yu
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
电脑桌完成签到,获得积分10
2秒前
发嗲的雨筠完成签到,获得积分0
3秒前
snnn完成签到,获得积分10
3秒前
清澜庭完成签到,获得积分10
3秒前
七田皿完成签到,获得积分20
3秒前
lzy应助长鼻子匹诺曹采纳,获得10
3秒前
英姑应助喜悦的唇膏采纳,获得10
3秒前
4秒前
4秒前
不想上学完成签到,获得积分10
4秒前
众行绘研应助LZT采纳,获得10
4秒前
优娜完成签到 ,获得积分10
5秒前
拥挤而独行完成签到,获得积分10
5秒前
林家小弟完成签到 ,获得积分10
5秒前
nianshu完成签到 ,获得积分0
5秒前
唔西迪西发布了新的文献求助10
6秒前
6秒前
ooo完成签到 ,获得积分10
6秒前
彭于晏应助阿怪采纳,获得10
6秒前
Atan完成签到,获得积分10
6秒前
huangchengzi发布了新的文献求助10
7秒前
Q52完成签到 ,获得积分10
7秒前
2233完成签到,获得积分10
7秒前
称心的冥王星完成签到,获得积分10
7秒前
wl123完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
hanli完成签到,获得积分20
8秒前
zhugepengju发布了新的文献求助10
8秒前
大个应助黄伟凯采纳,获得10
9秒前
熙熙发布了新的文献求助10
9秒前
10秒前
peter_yang完成签到,获得积分20
10秒前
10秒前
大个应助幽壑之潜蛟采纳,获得10
10秒前
华仔应助king756796723采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803