Virtual Sensors for Mooring Line Tension Monitoring

加速度计 系泊 海洋工程 安装 全球定位系统 计算机科学 张力(地质) 直线(几何图形) 模拟 航向(导航) 领域(数学) 工程类 实时计算 航空航天工程 电信 纯数学 操作系统 力矩(物理) 物理 经典力学 数学 几何学
作者
Vivek Jaiswal,Aaron Austin Brown,Yu Meng
标识
DOI:10.4043/30562-ms
摘要

Mooring line tension monitoring is required for permanently moored floating offshore platforms by some regional regulators and classification societies. This requirement is typically satisfied by installing physical sensors that directly measure the line tension. Experience shows these sensors have relatively short life compared to the platform operational life and consequently they need to be changed several times thereby increasing the operational expenses. It is also possible that changing the sensors in the field may not be feasible due to access and safety issues or it may be prohibitively expensive, which could lead to the platform operating without meeting the regulations. This paper presents a machine learning based model, which we call ‘virtual sensor’, for predicting the mooring line tensions based on the platform’s heading, horizontal position and six-degrees-of-freedom (6-dof) rigid body motions. The model’s development and testing are demonstrated with the help of data generated through numerical simulations of a permanently moored semi-submersible. When deployed in field, the inputs to the virtual sensor would be obtained from the global position system (GPS) and accelerometers. Both the GPS and accelerometer are cheaper to install and maintain, reliable and easy to replace. The neural network model is pre-trained using a dataset of 5000 static simulations and further fine-tuned with 48 dynamic simulation cases. Model performance on four mooring lines are presented in the study. The accuracy of the model was assessed by determining the percentage of predictions with errors within ±5% of the simulated mooring line tensions. Three of the mooring lines achieved accuracy greater than 90% and one mooring line achieved 77% accuracy. The relevant limitations of the study and future work are discussed in the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助mmyhn采纳,获得10
刚刚
NexusExplorer应助zhishiyanhua采纳,获得10
3秒前
失眠的汽车完成签到,获得积分10
5秒前
星辰大海应助Hh采纳,获得10
5秒前
小高同学发布了新的文献求助10
5秒前
小野狼完成签到,获得积分10
5秒前
在水一方应助靓丽的乌龟采纳,获得10
6秒前
舒心台灯发布了新的文献求助30
8秒前
8秒前
momo完成签到,获得积分10
9秒前
可爱的函函应助董吉采纳,获得10
9秒前
Ava应助执着采纳,获得10
10秒前
西湖渔夫发布了新的文献求助10
12秒前
13秒前
13秒前
被动科研完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
cheng发布了新的文献求助30
15秒前
小吴完成签到,获得积分10
17秒前
17秒前
lwz2688完成签到,获得积分10
18秒前
吹吹完成签到,获得积分10
18秒前
醋包plz发布了新的文献求助10
19秒前
活力菠萝完成签到,获得积分10
19秒前
可爱的函函应助小高同学采纳,获得10
19秒前
冷冷暴力完成签到,获得积分10
19秒前
orixero应助陶治采纳,获得10
19秒前
千秋骚年发布了新的文献求助10
20秒前
20秒前
铃旅完成签到,获得积分10
22秒前
csuxxm完成签到,获得积分10
23秒前
SHEEPMEN发布了新的文献求助10
24秒前
笑哈哈发布了新的文献求助10
25秒前
绿野仙踪完成签到,获得积分10
28秒前
cheng完成签到,获得积分10
28秒前
29秒前
30秒前
wzgkeyantong发布了新的文献求助20
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175