An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting

计算机科学 随机森林 人工智能 碳价格 稳健性(进化) 非线性系统 特征提取 机器学习 集成学习 深度学习 计量经济学 数学 化学 物理 量子力学 生态学 生物化学 气候变化 基因 生物
作者
Jujie Wang,Xin Sun,Qian Cheng,Quan Cui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:762: 143099-143099 被引量:151
标识
DOI:10.1016/j.scitotenv.2020.143099
摘要

Carbon price is the basis of developing a low carbon economy. The accurate carbon price forecast can not only stimulate the actions of enterprises and families, but also encourage the study and development of low carbon technology. However, as the original carbon price series is non-stationary and nonlinear, traditional methods are less robust to predict it. In this study, an innovative nonlinear ensemble paradigm of improved feature extraction and deep learning algorithm is proposed for carbon price forecasting, which includes complete ensemble empirical mode decomposition (CEEMDAN), sample entropy (SE), long short-term memory (LSTM) and random forest (RF). As the core of the proposed model, LSTM enhanced from the recurrent neural network is utilized to establish appropriate prediction models by extracting memory features of the long and short term. Improved feature extraction, as assistant data preprocessing, represents its unique advantage for improving calculating efficiency and accuracy. Removing irrelevant features from original time series through CEEMDAN lets learning easier and it's even better for using SE to recombine similar-complexity modes. Furthermore, compared with simple linear ensemble learning, RF increases the generalization ability for robustness to achieve the final nonlinear output results. Two markets' real data of carbon trading in china are as the experiment cases to test the effectiveness of the above model. The final simulation results indicate that the proposed model performs better than the other four benchmark methods reflected by the smaller statistical errors. Overall, the developed approach provides an effective method for predicting carbon price.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjy发布了新的文献求助10
1秒前
accept发布了新的文献求助10
1秒前
科研通AI6.1应助az采纳,获得10
2秒前
2秒前
2秒前
2秒前
Shinchan完成签到,获得积分10
3秒前
范拽拽给范拽拽的求助进行了留言
4秒前
niNe3YUE应助明理歌曲采纳,获得10
4秒前
5秒前
6秒前
传奇3应助ciwei采纳,获得10
7秒前
7秒前
Zoye发布了新的文献求助10
9秒前
大方明杰发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
小小青完成签到,获得积分10
12秒前
12秒前
敏感的鸿煊完成签到,获得积分10
13秒前
前进的小宅熊完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
YangSY发布了新的文献求助10
14秒前
莲莲发布了新的文献求助10
15秒前
CodeCraft应助搞怪的元槐采纳,获得30
16秒前
背后中心发布了新的文献求助10
16秒前
16秒前
asri1234发布了新的文献求助30
17秒前
清水胖子发布了新的文献求助30
17秒前
Lucas应助clueless采纳,获得10
18秒前
香菜发布了新的文献求助10
18秒前
20秒前
然大宝完成签到,获得积分10
20秒前
sdsa完成签到,获得积分10
20秒前
drift完成签到,获得积分10
21秒前
所所应助正直从阳采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488