An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting

计算机科学 随机森林 人工智能 碳价格 稳健性(进化) 非线性系统 特征提取 机器学习 集成学习 深度学习 计量经济学 数学 化学 物理 量子力学 生态学 生物化学 气候变化 基因 生物
作者
Jujie Wang,Xin Sun,Qian Cheng,Quan Cui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:762: 143099-143099 被引量:151
标识
DOI:10.1016/j.scitotenv.2020.143099
摘要

Carbon price is the basis of developing a low carbon economy. The accurate carbon price forecast can not only stimulate the actions of enterprises and families, but also encourage the study and development of low carbon technology. However, as the original carbon price series is non-stationary and nonlinear, traditional methods are less robust to predict it. In this study, an innovative nonlinear ensemble paradigm of improved feature extraction and deep learning algorithm is proposed for carbon price forecasting, which includes complete ensemble empirical mode decomposition (CEEMDAN), sample entropy (SE), long short-term memory (LSTM) and random forest (RF). As the core of the proposed model, LSTM enhanced from the recurrent neural network is utilized to establish appropriate prediction models by extracting memory features of the long and short term. Improved feature extraction, as assistant data preprocessing, represents its unique advantage for improving calculating efficiency and accuracy. Removing irrelevant features from original time series through CEEMDAN lets learning easier and it's even better for using SE to recombine similar-complexity modes. Furthermore, compared with simple linear ensemble learning, RF increases the generalization ability for robustness to achieve the final nonlinear output results. Two markets' real data of carbon trading in china are as the experiment cases to test the effectiveness of the above model. The final simulation results indicate that the proposed model performs better than the other four benchmark methods reflected by the smaller statistical errors. Overall, the developed approach provides an effective method for predicting carbon price.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxt完成签到,获得积分10
刚刚
刚刚
Zx_1993应助wackykao采纳,获得10
1秒前
2秒前
2秒前
2秒前
tooty发布了新的文献求助10
2秒前
52huihui关注了科研通微信公众号
3秒前
3秒前
4秒前
nito发布了新的文献求助10
4秒前
xinxin发布了新的文献求助10
5秒前
共享精神应助北山采纳,获得10
5秒前
侠客完成签到,获得积分10
5秒前
小小月发布了新的文献求助10
5秒前
Akim应助曹梦龙采纳,获得10
6秒前
zheng发布了新的文献求助10
6秒前
凝望发布了新的文献求助10
6秒前
6秒前
赘婿应助泌尿科小医生采纳,获得10
8秒前
刘一一发布了新的文献求助10
8秒前
8秒前
8秒前
xiaolei001应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得50
8秒前
giggle应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
热心树叶应助科研通管家采纳,获得30
9秒前
MM应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175