An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting

计算机科学 随机森林 人工智能 碳价格 稳健性(进化) 非线性系统 特征提取 机器学习 集成学习 时间序列 深度学习 计量经济学 数学 生态学 物理 气候变化 基因 生物 量子力学 生物化学 化学
作者
Jujie Wang,Xin Sun,Qian Cheng,Quan Cui
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:762: 143099-143099 被引量:106
标识
DOI:10.1016/j.scitotenv.2020.143099
摘要

Carbon price is the basis of developing a low carbon economy. The accurate carbon price forecast can not only stimulate the actions of enterprises and families, but also encourage the study and development of low carbon technology. However, as the original carbon price series is non-stationary and nonlinear, traditional methods are less robust to predict it. In this study, an innovative nonlinear ensemble paradigm of improved feature extraction and deep learning algorithm is proposed for carbon price forecasting, which includes complete ensemble empirical mode decomposition (CEEMDAN), sample entropy (SE), long short-term memory (LSTM) and random forest (RF). As the core of the proposed model, LSTM enhanced from the recurrent neural network is utilized to establish appropriate prediction models by extracting memory features of the long and short term. Improved feature extraction, as assistant data preprocessing, represents its unique advantage for improving calculating efficiency and accuracy. Removing irrelevant features from original time series through CEEMDAN lets learning easier and it's even better for using SE to recombine similar-complexity modes. Furthermore, compared with simple linear ensemble learning, RF increases the generalization ability for robustness to achieve the final nonlinear output results. Two markets' real data of carbon trading in china are as the experiment cases to test the effectiveness of the above model. The final simulation results indicate that the proposed model performs better than the other four benchmark methods reflected by the smaller statistical errors. Overall, the developed approach provides an effective method for predicting carbon price.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyh完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
派大星发布了新的文献求助10
4秒前
烟花应助lumia采纳,获得10
5秒前
6秒前
含蓄元冬发布了新的文献求助10
6秒前
小马甲应助LLL采纳,获得10
7秒前
李健应助钟于采纳,获得10
8秒前
袁大头发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
13秒前
15秒前
chenhua5460完成签到,获得积分10
16秒前
lppp发布了新的文献求助10
16秒前
Jasper应助LLL采纳,获得10
16秒前
David发布了新的文献求助10
17秒前
20秒前
科研通AI2S应助青葙子采纳,获得30
21秒前
你好发布了新的文献求助10
21秒前
22秒前
24秒前
研友_LNMmW8发布了新的文献求助10
24秒前
orixero应助甲乙丙丁采纳,获得10
24秒前
脑洞疼应助黄h采纳,获得10
27秒前
bkagyin应助LLL采纳,获得10
27秒前
27秒前
27秒前
28秒前
29秒前
Akim应助自觉的无声采纳,获得10
30秒前
30秒前
叶听枫发布了新的文献求助10
31秒前
31秒前
32秒前
偤萸发布了新的文献求助10
34秒前
Superg发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432