亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting

计算机科学 随机森林 人工智能 碳价格 稳健性(进化) 非线性系统 特征提取 机器学习 集成学习 深度学习 计量经济学 数学 生态学 基因 物理 气候变化 生物 量子力学 生物化学 化学
作者
Jujie Wang,Xin Sun,Qian Cheng,Quan Cui
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:762: 143099-143099 被引量:151
标识
DOI:10.1016/j.scitotenv.2020.143099
摘要

Carbon price is the basis of developing a low carbon economy. The accurate carbon price forecast can not only stimulate the actions of enterprises and families, but also encourage the study and development of low carbon technology. However, as the original carbon price series is non-stationary and nonlinear, traditional methods are less robust to predict it. In this study, an innovative nonlinear ensemble paradigm of improved feature extraction and deep learning algorithm is proposed for carbon price forecasting, which includes complete ensemble empirical mode decomposition (CEEMDAN), sample entropy (SE), long short-term memory (LSTM) and random forest (RF). As the core of the proposed model, LSTM enhanced from the recurrent neural network is utilized to establish appropriate prediction models by extracting memory features of the long and short term. Improved feature extraction, as assistant data preprocessing, represents its unique advantage for improving calculating efficiency and accuracy. Removing irrelevant features from original time series through CEEMDAN lets learning easier and it's even better for using SE to recombine similar-complexity modes. Furthermore, compared with simple linear ensemble learning, RF increases the generalization ability for robustness to achieve the final nonlinear output results. Two markets' real data of carbon trading in china are as the experiment cases to test the effectiveness of the above model. The final simulation results indicate that the proposed model performs better than the other four benchmark methods reflected by the smaller statistical errors. Overall, the developed approach provides an effective method for predicting carbon price.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
dawn完成签到,获得积分20
11秒前
dawn发布了新的文献求助10
14秒前
36秒前
汉堡包应助Fluoxtine采纳,获得10
43秒前
xixi发布了新的文献求助10
43秒前
丘比特应助科研通管家采纳,获得10
44秒前
FashionBoy应助科研通管家采纳,获得10
44秒前
汉堡包应助科研通管家采纳,获得10
44秒前
慕青应助科研通管家采纳,获得10
44秒前
kuoping完成签到,获得积分0
47秒前
52秒前
机灵自中完成签到,获得积分10
58秒前
Stellarshi517发布了新的文献求助20
58秒前
1分钟前
科研通AI6.1应助xixi采纳,获得10
1分钟前
lyw发布了新的文献求助10
1分钟前
田様应助Stellarshi517采纳,获得20
1分钟前
1分钟前
kuiuLinvk发布了新的文献求助10
1分钟前
1分钟前
kuiuLinvk完成签到,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
采薇发布了新的文献求助10
2分钟前
2分钟前
科研通AI6.1应助小博采纳,获得10
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助凛玖niro采纳,获得10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lzmcsp发布了新的文献求助10
2分钟前
2分钟前
斯文败类应助Marshall采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577