Database, Features, and Machine Learning Model to Identify Thermally Driven Metal–Insulator Transition Compounds

计算机科学 材料科学 原子半径 数据库 拓扑绝缘体 化学物理 化学 物理 凝聚态物理 量子力学
作者
Alexandru B. Georgescu,Peiwen Ren,Aubrey R. Toland,Shengtong Zhang,Kyle D. Miller,Daniel W. Apley,Elsa Olivetti,Nicholas Wagner,James M. Rondinelli
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:33 (14): 5591-5605 被引量:38
标识
DOI:10.1021/acs.chemmater.1c00905
摘要

Metal-insulator transition (MIT) compounds are materials that may exhibit insulating or metallic behavior, depending on the physical conditions, and are of immense fundamental interest owing to their potential applications in emerging microelectronics. There is a dearth of thermally-driven MIT materials, however, which makes delineating these compounds from those that are exclusively insulating or metallic challenging. Here we report a material database comprising temperature-controlled MITs (and metals and insulators with similar chemical composition and stoichiometries to the MIT compounds) from high quality experimental literature, built through a combination of materials-domain knowledge and natural language processing. We featurize the dataset using compositional, structural, and energetic descriptors, including two MIT relevant energy scales, an estimated Hubbard interaction and the charge transfer energy, as well as the structure-bond-stress metric referred to as the global-instability index (GII). We then perform supervised classification, constructing three electronic-state classifiers: metal vs non-metal (M), insulator vs non-insulator (I), and MIT vs non-MIT (T). We identify two important descriptors that separate metals, insulators, and MIT materials in a 2D feature space: the average deviation of the covalent radius and the range of the Mendeleev number. We further elaborate on other important features (GII and Ewald energy), and examine how they affect classification of binary vanadium and titanium oxides. We discuss the relationship of these atomic features to the physical interactions underlying MITs in the rare-earth nickelate family. Last, we implement an online version of the classifiers, enabling quick probabilistic class predictions by uploading a crystallographic structure file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zsy采纳,获得10
刚刚
2秒前
2秒前
乐乐应助卓立0418采纳,获得30
4秒前
黑暗与黎明完成签到 ,获得积分10
7秒前
9秒前
雨听寒应助豆豆采纳,获得10
10秒前
善学以致用应助好了采纳,获得10
11秒前
毛豆应助雪落采纳,获得10
11秒前
思源应助bemyselfelsa采纳,获得10
12秒前
Owen应助wen采纳,获得10
12秒前
14秒前
啪啪啪完成签到,获得积分10
14秒前
CipherSage应助橘络采纳,获得10
14秒前
tqy发布了新的文献求助10
15秒前
嘟嘟许完成签到 ,获得积分10
15秒前
万能图书馆应助调皮嫣娆采纳,获得10
16秒前
17秒前
wang完成签到,获得积分10
17秒前
18秒前
乐乐应助温柔的鹭洋采纳,获得30
18秒前
生鱼安乐完成签到 ,获得积分10
18秒前
大模型应助Lee采纳,获得10
18秒前
19秒前
田様应助tqy采纳,获得10
19秒前
啪啪啪发布了新的文献求助10
19秒前
19秒前
20秒前
田様应助小喻采纳,获得10
21秒前
昔年若许发布了新的文献求助10
21秒前
Flanlove完成签到 ,获得积分10
21秒前
木兆完成签到 ,获得积分10
22秒前
传奇3应助周洋采纳,获得10
23秒前
YUYU发布了新的文献求助10
23秒前
zzzllove发布了新的文献求助10
25秒前
刘璇1发布了新的文献求助10
25秒前
天天快乐应助Jonathan采纳,获得10
26秒前
27秒前
行隐应助zcz采纳,获得10
27秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589