Database, Features, and Machine Learning Model to Identify Thermally Driven Metal–Insulator Transition Compounds

计算机科学 材料科学 原子半径 数据库 拓扑绝缘体 化学物理 化学 物理 凝聚态物理 量子力学
作者
Alexandru B. Georgescu,Peiwen Ren,Aubrey R. Toland,Shengtong Zhang,Kyle D. Miller,Daniel W. Apley,Elsa Olivetti,Nicholas Wagner,James M. Rondinelli
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:33 (14): 5591-5605 被引量:38
标识
DOI:10.1021/acs.chemmater.1c00905
摘要

Metal-insulator transition (MIT) compounds are materials that may exhibit insulating or metallic behavior, depending on the physical conditions, and are of immense fundamental interest owing to their potential applications in emerging microelectronics. There is a dearth of thermally-driven MIT materials, however, which makes delineating these compounds from those that are exclusively insulating or metallic challenging. Here we report a material database comprising temperature-controlled MITs (and metals and insulators with similar chemical composition and stoichiometries to the MIT compounds) from high quality experimental literature, built through a combination of materials-domain knowledge and natural language processing. We featurize the dataset using compositional, structural, and energetic descriptors, including two MIT relevant energy scales, an estimated Hubbard interaction and the charge transfer energy, as well as the structure-bond-stress metric referred to as the global-instability index (GII). We then perform supervised classification, constructing three electronic-state classifiers: metal vs non-metal (M), insulator vs non-insulator (I), and MIT vs non-MIT (T). We identify two important descriptors that separate metals, insulators, and MIT materials in a 2D feature space: the average deviation of the covalent radius and the range of the Mendeleev number. We further elaborate on other important features (GII and Ewald energy), and examine how they affect classification of binary vanadium and titanium oxides. We discuss the relationship of these atomic features to the physical interactions underlying MITs in the rare-earth nickelate family. Last, we implement an online version of the classifiers, enabling quick probabilistic class predictions by uploading a crystallographic structure file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助你晖哥采纳,获得10
刚刚
qinghe完成签到,获得积分10
刚刚
必发文章完成签到,获得积分10
1秒前
2秒前
科目三应助cc采纳,获得10
2秒前
3秒前
4秒前
5秒前
CipherSage应助wuliww采纳,获得10
5秒前
文复关注了科研通微信公众号
5秒前
乖猫要努力应助萌酱采纳,获得10
6秒前
桐桐应助马丝雨采纳,获得10
6秒前
7秒前
畅快莹芝完成签到,获得积分10
7秒前
7秒前
旺仔发布了新的文献求助10
8秒前
希望天下0贩的0应助liling采纳,获得10
9秒前
织心完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
领导范儿应助必发文章采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
12秒前
cc发布了新的文献求助10
12秒前
CharlotteBlue应助jinxixi采纳,获得30
12秒前
lily大王发布了新的文献求助10
13秒前
王琳完成签到,获得积分10
13秒前
13秒前
不贴壁的293T完成签到,获得积分10
14秒前
你晖哥发布了新的文献求助10
14秒前
14秒前
15秒前
所所应助nylon采纳,获得10
15秒前
退之发布了新的文献求助10
15秒前
mldxy发布了新的文献求助10
17秒前
SYLH应助bai采纳,获得10
18秒前
哈哈哈发布了新的文献求助10
19秒前
456完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821