UPEFinder: A Bioinformatic Tool for the Study of Uncharacterized Proteins Based on Gene Expression Correlation and the PageRank Algorithm

人类蛋白质组计划 蛋白质组 计算机科学 计算生物学 页面排名 情报检索 生物 蛋白质组学 生物信息学 基因 遗传学
作者
José González-Gomariz,Guillermo Serrano,Carlos M. Tilve-Álvarez,Fernando J. Corrales,Elizabeth Guruceaga,Víctor Segura
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:19 (12): 4795-4807 被引量:3
标识
DOI:10.1021/acs.jproteome.0c00364
摘要

The Human Proteome Project (HPP) is leading the international effort to characterize the human proteome. Although the main goal of this project was first focused on the detection of missing proteins, a new challenge arose from the need to assign biological functions to the uncharacterized human proteins and describe their implications in human diseases. Not only the proteins with experimental evidence (uPE1 proteins) but also the uncharacterized missing proteins (uMPs) were the objects of study in this challenge, neXt-CP50. In this work, we developed a new bioinformatic approach to infer biological annotations for the uPE1 proteins and uMPs based on a “guilt-by-association” analysis using public RNA-Seq data sets. We used the correlation of these proteins with the well-characterized PE1 proteins to construct a network. In this way, we applied the PageRank algorithm to this network to identify the most relevant nodes, which were the biological annotations of the uncharacterized proteins. All of the generated information was stored in a database. In addition, we implemented the web application UPEFinder (https://upefinder.proteored.org) to facilitate the access to this new resource. This information is especially relevant for the researchers of the HPP who are interested in the generation and validation of new hypotheses about the functions of these proteins. Both the database and the web application are publicly available (https://github.com/ubioinformat/UPEfinder).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛洛发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
麻薯关注了科研通微信公众号
1秒前
1秒前
2秒前
共享精神应助刘小乐采纳,获得10
2秒前
4秒前
肖雪依发布了新的文献求助10
4秒前
4秒前
4秒前
竹子完成签到,获得积分10
5秒前
屾哥发布了新的文献求助10
5秒前
6秒前
6秒前
vvvvvvld发布了新的文献求助10
7秒前
852应助大梦先生采纳,获得10
7秒前
李爱国应助开心的又夏采纳,获得10
8秒前
Lyndonz7u完成签到,获得积分10
9秒前
666完成签到,获得积分10
10秒前
哈哈哈哈发布了新的文献求助30
10秒前
随心随意发布了新的文献求助10
11秒前
azure发布了新的文献求助10
11秒前
斯文败类应助YY采纳,获得30
12秒前
12秒前
13秒前
共享精神应助Wtt采纳,获得20
14秒前
开心的又夏完成签到,获得积分20
16秒前
16秒前
16秒前
17秒前
希望天下0贩的0应助紫心采纳,获得10
17秒前
cbf发布了新的文献求助10
17秒前
可爱的函函应助幸福鑫鹏采纳,获得10
18秒前
19秒前
刘小乐发布了新的文献求助10
19秒前
ding应助刘梦杰采纳,获得10
19秒前
20秒前
uuu完成签到,获得积分10
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608