成骨细胞
化学
细胞生物学
运行x2
小RNA
细胞生长
下调和上调
癌症研究
基因敲除
MAPK/ERK通路
骨钙素
细胞迁移
脐静脉
基因沉默
p38丝裂原活化蛋白激酶
分子生物学
作者
Xingwen Wang,Bin Geng,Hong Wang,shenghong Wang,Dacheng Zhao,Jinwen He,Fan Lü,Jiangdong An,Cuifang Wang,Yayi Xia
标识
DOI:10.1080/03008207.2021.1891228
摘要
Fluid shear stress (FSS) plays a critical role in osteoblast proliferation. However, the role of miRNA in osteoblast proliferation induced by FSS and the possible molecular mechanisms remain to be defined. The aim of the present study was to investigate whether miR-140-5p regulates osteoblast proliferation under FSS and its molecular mechanism.miR-140-5p expression was measured by qRT-PCR. Western blot was used to measure the expressions of P-ERK1/2, ERK1/2, P-ERK5 and ERK5. The levels of VEGFA, PCNA, CDK4 and Cyclin D1 were identified through qRT-PCR and western blot, respectively. Cell proliferation was detected by CCK-8 assay and EdU labeling assay. Dual-luciferase reporter assay was used to validate the target of miR-140-5p.miR-140-5p was significantly down-regulated when MC3T3-E1 cells were exposed to FSS. We then confirmed that up-regulation of miR-140-5p inhibited and down-regulation of miR-140-5p promoted osteoblast proliferation. In addition, FSS promotes osteoblast proliferation via down-regulating miR-140-5p. Luciferase reporter assay demonstrated that VEGFA is a direct target of miR-140-5p. Furthermore, transfection of mimic-140-5p inhibited the up-regulation of VEGFA protein level induced by FSS, suggesting that FSS regulates VEGFA protein expression via miR-140-5p. Further investigations demonstrated that VEGFA could promote osteoblast proliferation. Lastly, we demonstrated that miR-140-5p regulates osteoblast proliferation and ERK5 activation through VEGFA.Our study demonstrates that FSS-induced the down-regulation of miR-140-5p promotes osteoblast proliferation through activing VEGFA/ERK5 signaling pathway. These findings may provide a novel mechanism of FSS-induced osteoblast proliferation and offer a new avenue to further investigate osteogenesis induced by mechanical loading.
科研通智能强力驱动
Strongly Powered by AbleSci AI