Deep Multi-Instance Learning with Induced Self-Attention for Medical Image Classification

可解释性 计算机科学 人工智能 判别式 上下文图像分类 机器学习 模式识别(心理学) 图像(数学) 深度学习 分类器(UML) 数据挖掘
作者
Zhenliang Li,Liming Yuan,Haixia Xu,Rui Cheng,Xianbin Wen
标识
DOI:10.1109/bibm49941.2020.9313518
摘要

Existing Multi-Instance learning (MIL) methods for medical image classification typically segment an image (bag) into small patches (instances) and learn a classifier to predict the label of an unknown bag. Most of such methods assume that instances within a bag are independently and identically distributed. However, instances in the same bag often interact with each other. In this paper, we propose an Induced SelfAttention based deep MIL method that uses the self-attention mechanism for learning the global structure information within a bag. To alleviate the computational complexity of the naive implementation of self-attention, we introduce an inducing point based scheme into the self-attention block. We show empirically that the proposed method is superior to other deep MIL methods in terms of performance and interpretability on three medical image data sets. We also employ a synthetic MIL data set to provide an intensive analysis of the effectiveness of our method. The experimental results reveal that the induced self-attention mechanism can learn very discriminative and different features for target and non-target instances within a bag, and thus fits more generalized MIL problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
夜星寒月发布了新的文献求助10
3秒前
风趣的从梦完成签到,获得积分10
3秒前
4秒前
CodeCraft应助火星上黑米采纳,获得10
4秒前
4秒前
六金完成签到 ,获得积分10
4秒前
5秒前
平常的问雁完成签到,获得积分10
6秒前
7秒前
7秒前
why359发布了新的文献求助10
8秒前
8秒前
pluto应助可爱的小树苗采纳,获得10
8秒前
8秒前
9秒前
9秒前
研友_Zrlk7L发布了新的文献求助10
10秒前
陶1122发布了新的文献求助30
10秒前
11秒前
SYSUer发布了新的文献求助10
11秒前
TTT完成签到,获得积分10
11秒前
坚强难摧发布了新的文献求助10
12秒前
12秒前
噜啦噜啦发布了新的文献求助10
13秒前
老王小六发布了新的文献求助10
14秒前
huizi完成签到,获得积分10
14秒前
芭娜55完成签到 ,获得积分10
15秒前
15秒前
kongkong完成签到,获得积分10
15秒前
研友_8RyzBZ发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
CC完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
sophiemore发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821