Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation

聚丙烯腈 聚苯胺 材料科学 纳米颗粒 纳米纤维 静电纺丝 脚手架 导电聚合物 纳米技术 化学工程 聚合物 复合材料 生物医学工程 聚合 医学 工程类
作者
Mayue Wang,Pier‐Luc Tremblay,Tian Zhang
出处
期刊:Bioelectrochemistry [Elsevier]
卷期号:140: 107750-107750 被引量:19
标识
DOI:10.1016/j.bioelechem.2021.107750
摘要

Tissue engineering scaffolds made of biocompatible polymers are promising alternatives for nerve reparation. For this application, cell proliferation will be speeded up by electrostimulation, which required electrically-conductive materials. Here, a biomimicking scaffold with optimized conductivity was developed from electrospun polyacrylonitrile/electrically-conductive polyaniline (PAN/PANI) nanofibers doped with Ni nanoparticles. PAN/PANI/Ni was biocompatible for Schwann cells and exhibited a suitable tensile strength and wettability for cell proliferation. When compared with unmodified PAN/PANI, the electrical conductivity of PAN/PANI/Ni was 6.4 fold higher. Without electrostimulation, PAN/PANI and PAN/PANI/Ni exhibited similar Schwann cells’ proliferation rates. Upon electrostimulation at 100 mV cm−1 for one hour per day over five days, PAN/PANI/Ni accelerated Schwann cells’ proliferation 2.1 times compared to PAN/PANI. These results demonstrate the importance of expanding the electrical conductivity of the tissue engineering scaffold to ensure optimal electrostimulation of nerve cell growth. Additionally, this study describes a straightforward approach to modulate the electrical conductivity of polymeric materials via the addition of Ni nanoparticles that can be applied to different biomimicking scaffolds for nerve healing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小黑关注了科研通微信公众号
1秒前
邱彗星完成签到,获得积分10
1秒前
杨知意完成签到,获得积分10
2秒前
禾泽完成签到,获得积分10
2秒前
2秒前
陶醉怜容完成签到,获得积分10
2秒前
3秒前
3秒前
zhancon完成签到,获得积分10
4秒前
4秒前
大淼完成签到,获得积分10
4秒前
5秒前
田様应助Ych采纳,获得10
5秒前
6秒前
123完成签到,获得积分10
6秒前
lieditongxu完成签到,获得积分10
7秒前
zhihan完成签到,获得积分10
7秒前
方方别方完成签到 ,获得积分10
8秒前
jxcandice发布了新的文献求助10
8秒前
yx发布了新的文献求助10
8秒前
科研通AI5应助nalan采纳,获得10
9秒前
小林完成签到 ,获得积分10
10秒前
10秒前
lieditongxu发布了新的文献求助10
10秒前
拼搏的潘子完成签到 ,获得积分10
10秒前
11秒前
李知恩发布了新的文献求助10
11秒前
默认用户名完成签到,获得积分10
12秒前
NexusExplorer应助泥花采纳,获得10
13秒前
13秒前
紫菜完成签到,获得积分10
14秒前
温暖以蓝关注了科研通微信公众号
14秒前
p8793428完成签到,获得积分10
14秒前
王小志完成签到,获得积分10
14秒前
zc19891130发布了新的文献求助10
14秒前
嘻嘻完成签到,获得积分20
14秒前
Z小姐完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794