SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes

非负矩阵分解 生物 反褶积 计算生物学 转录组 电池类型 仿形(计算机编程) 模式识别(心理学) 基因表达 基因 矩阵分解 细胞 人工智能 计算机科学 遗传学 算法 特征向量 物理 操作系统 量子力学
作者
Marc Elosua-Bayés,Paula Nieto,Elisabetta Mereu,Marta Gut,Holger Heyn
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:49 (9): e50-e50 被引量:380
标识
DOI:10.1093/nar/gkab043
摘要

Abstract Spatially resolved gene expression profiles are key to understand tissue organization and function. However, spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots). Simulating varying reference quantities and qualities, we confirmed high prediction accuracy also with shallowly sequenced or small-sized scRNA-seq reference datasets. SPOTlight deconvolution of the mouse brain correctly mapped subtle neuronal cell states of the cortical layers and the defined architecture of the hippocampus. In human pancreatic cancer, we successfully segmented patient sections and further fine-mapped normal and neoplastic cell states. Trained on an external single-cell pancreatic tumor references, we further charted the localization of clinical-relevant and tumor-specific immune cell states, an illustrative example of its flexible application spectrum and future potential in digital pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
无花果应助jucy采纳,获得10
刚刚
02完成签到,获得积分10
刚刚
刚刚
科目三应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
wanci应助理塘大学士采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
GPTea应助科研通管家采纳,获得150
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小小应助科研通管家采纳,获得10
2秒前
海蓝云天应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
滴滴哩哩完成签到,获得积分10
3秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
3秒前
momo应助Rubia采纳,获得10
4秒前
Rita发布了新的文献求助10
5秒前
ZRBs发布了新的文献求助10
6秒前
6秒前
7秒前
浮浮世世发布了新的文献求助10
8秒前
冷艳又菱完成签到,获得积分10
9秒前
10秒前
better完成签到,获得积分10
10秒前
11秒前
qingfeng完成签到,获得积分10
12秒前
少冬瓜发布了新的文献求助10
12秒前
12秒前
陈xt发布了新的文献求助10
12秒前
dandan完成签到,获得积分10
14秒前
干饭虫应助Yvette2024采纳,获得10
15秒前
16秒前
张小馨完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181693
求助须知:如何正确求助?哪些是违规求助? 4368600
关于积分的说明 13603680
捐赠科研通 4219863
什么是DOI,文献DOI怎么找? 2314259
邀请新用户注册赠送积分活动 1313000
关于科研通互助平台的介绍 1261716