Implementation of Correlation and Regression Models for Health Insurance Fraud in Covid-19 Environment using Actuarial and Data Science Techniques

精算学 2019年冠状病毒病(COVID-19) 皮尔逊积矩相关系数 保险欺诈 对数 回归分析 工作(物理) 相关系数 价值(数学) 业务 计算机科学 计量经济学 统计 医学 经济 数学 工程类 疾病 病理 数学分析 传染病(医学专业) 机械工程
作者
Rohan Yashraj Gupta,Satya Sai Mudigonda,Pallav Kumar Baruah,Phani Krishna Kandala
出处
期刊:International journal of recent technology and engineering [Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP]
卷期号:9 (3): 699-706 被引量:4
标识
DOI:10.35940/ijrte.c4686.099320
摘要

Fraud acts as a major deterrent to a company’s growth if uncontrolled. It challenges the fundamental value of “Trust” in the Insurance business. COVID-19 brought additional challenges of increased potential fraud to health insurance business. This work describes implementation of existing and enhanced fraud detection methods in the pre-COVID-19 and COVID-19 environments. For this purpose, we have developed an innovative enhanced fraud detection framework using actuarial and data science techniques. Triggers specific to COVID-19 are identified in addition to the existing triggers. We have also explored the relationship between insurance fraud and COVID-19. To determine this we calculated Pearson correlation coefficient and fitted logarithmic regression model between fraud in health insurance and COVID-19 cases. This work uses two datasets: health insurance dataset and Kaggle dataset on COVID-19 cases for the same select geographical location in India. Our experimental results shows Pearson correlation coefficient of 0.86, which implies that the month on month rate of fraudulent cases is highly correlated with month on month rate of COVID-19 cases. The logarithmic regression performed on the data gave the r-squared value of 0.91 which indicates that the model is a good fit. This work aims to provide much needed tools and techniques for health insurance business to counter the fraud.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xinxin98完成签到,获得积分20
2秒前
Orange应助鱼儿采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
cl发布了新的文献求助10
5秒前
秧木发布了新的文献求助10
5秒前
6秒前
苏卿应助痴情的萃采纳,获得30
6秒前
苏灿完成签到,获得积分10
7秒前
无花果应助Archer采纳,获得10
8秒前
酷波er应助666采纳,获得10
8秒前
8秒前
9秒前
Jasper应助猩心采纳,获得10
10秒前
10秒前
sujinyu发布了新的文献求助30
10秒前
10秒前
所所应助WillGUO采纳,获得20
11秒前
苏灿发布了新的文献求助10
11秒前
12秒前
zhihe完成签到 ,获得积分10
12秒前
12秒前
3123939715发布了新的文献求助10
13秒前
mm发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
16秒前
Akim应助痴情的萃采纳,获得10
17秒前
17秒前
Ava应助琪琪要发SCI采纳,获得10
17秒前
科研通AI5应助清零采纳,获得10
17秒前
17秒前
Jasper应助manman采纳,获得10
18秒前
清爽老九应助tanrui采纳,获得10
19秒前
花花发布了新的文献求助10
19秒前
YifanWang应助机智的亦巧采纳,获得30
19秒前
20秒前
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660581
求助须知:如何正确求助?哪些是违规求助? 3221883
关于积分的说明 9742143
捐赠科研通 2931203
什么是DOI,文献DOI怎么找? 1604831
邀请新用户注册赠送积分活动 757599
科研通“疑难数据库(出版商)”最低求助积分说明 734461