多项式logistic回归
报童模式
计量经济学
稳健性(进化)
罗伊特
多项式分布
概率逻辑
混合逻辑
计算机科学
逻辑回归
数学
人工智能
机器学习
供应链
生物化学
化学
政治学
法学
基因
作者
Jonas Andersson,Kurt Jörnsten,Jostein Lillestøl,Jan Ubøe
标识
DOI:10.1016/j.dajour.2023.100201
摘要
In this paper, we discuss discrete choice theory and show how this theory can be used to quantify learning effects in experimental studies. We argue why the ordering quantities in newsvendor experiments should follow a multinomial logit distribution. We provide a robustness analysis to explain that the standard conditions for logit distributions can be relaxed considerably. A main finding is that when optimal parameter values are inferred from the empirical data, the model predicts observed orders well. This provides empirical evidence for a multinomial logit distribution in such experiments. Finally, we analyze the learning effect using the experimental data collected by Bolton et al. (2012).
科研通智能强力驱动
Strongly Powered by AbleSci AI