Structural Evolution and Redox Mechanism of O3-NaNi1/3Fe1/3Mn1/3O2 Layered Cathode for Na Rechargeable Batteries

氧化还原 电化学 阴极 过渡金属 离子 钠离子电池 材料科学 X射线吸收光谱法 电池(电) 无机化学 化学 电极 吸收光谱法 物理化学 催化作用 冶金 功率(物理) 有机化学 法拉第效率 物理 生物化学 量子力学
作者
Mihee Jeong,Hayeon Lee,Jaesang Yoon,Won‐Sub Yoon
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (4): 567-567 被引量:2
标识
DOI:10.1149/ma2020-014567mtgabs
摘要

Sodium-ion batteries (SIBs) have great potential to alternate Li-ion batteries (LIBs) for large-scale energy storage systems in view of easy accessibility to Na resources and low cost [1–4]. Since Na ions are similar chemical characteristics of Li ions, the knowledge from research in LIBs can be easily applied to Na-based systems. Derived from the equivalent structures of Li analogue, various electrode materials such as oxides, polyanionic compounds, and sulfates, have been researched in SIBs to date [2,4–8]. One of the cathode candidates for SIBs, layered transition metal oxides (Na x TMO 2 , x ≤ 1, TM = transition metals) are of great interest due to their potential of relatively high capacity, simple structure, and easy synthesis [9,10]. In this study, layered sodium-ion battery cathode, O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 , has been systematically investigated by synchrotron-based analyses to characterize the structural behavior during electrochemical reaction. X-ray absorption spectroscopy shows reversible redox process upon cycling and clearly proves that both Ni and Fe are active in Na 1– x Ni 1/3 Fe 1/3 Mn 1/3 O 2 and that redox couples of Ni 2+ /Ni 4+ via Ni 3+ and Fe 3+ /Fe 4+ are responsible for charge compensation. Specifically, the capacity is mainly realized with Ni 2+ /Ni 4+ and slightly from Fe 3+ /Fe 4+ under charging voltage of 4.0 V. At high voltage (> 4.0 V), however, Feredox reaction is dominant and Ni contributes slightly to capacity. In terms of structural evolution, Na 1- x Ni 1/3 Fe 1/3 Mn 1/3 O 2 undergoes phase transformation from O3 to P3 structure below 4.0 V and further reaches OP2 structure above 4.0 V along with a significant contraction of d-spacing. Moreover, quantitative analysis of extended X-ray absorption fine structure suggests that disorder of local structure for Fe is greatly increased in high voltage region. Accordingly, collapse of d -spacing can be considered as being caused by Fe migration in the TM layer into the neighboring Na layer. This study will give a better understanding of phase transformation and clear charge compensation of NaNi 1/3 Fe 1/3 Mn 1/3 O 2 layered cathode during Na + deintercalation/intercalation. Furthermore, we propose the factor to bring the structural distortions under high voltage region by examining the local environment changes of each transition metal. From these experimental results, we will discuss structural evolution behavior and particular redox reaction of layered NaNi 1/3 Fe 1/3 Mn 1/3 O 2 cathode material. More detailed results and discussion will be presented in the 237 th ECS meeting. References: [1] V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M.H. Han, T. Rojo, Update on Na-based battery materials. A growing research path, Energy Environ. Sci. 6 (2013) 2312–2337. [2] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16 (2012) 168–177. [3] D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2015) 19–29. [4] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636–11682. [5] S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater. 2 (2012) 710–721. [6] S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci. 6 (2013) 2067–2081. [7] X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater. 27 (2015) 5343–5364. [8] S. Yuvaraj, W. Oh, W.-S. Yoon, Recent progress on sodium vanadium fluorophosphates for high voltage sodium-ion battery application, J. Electrochem. Sci. Technol. 10 (2019) 1–13. [9] K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, S. Komaba, Layered oxides as positive electrode materials for Na-ion batteries, MRS Bull. 39 (2014) 416–422. [10] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy Environ. Sci. 8 (2015) 81–102.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weilong完成签到,获得积分10
刚刚
昵称发布了新的文献求助10
刚刚
刚刚
刘先生发布了新的文献求助10
刚刚
1秒前
阿凉发布了新的文献求助10
1秒前
Elan发布了新的文献求助10
2秒前
Mry发布了新的文献求助10
2秒前
研友_ngJQzL发布了新的文献求助10
3秒前
Luna完成签到 ,获得积分10
3秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
3秒前
tz666666发布了新的文献求助20
4秒前
4秒前
Lz发布了新的文献求助10
4秒前
动听曼荷发布了新的文献求助10
6秒前
ZZZ完成签到,获得积分10
6秒前
上官若男应助kingwill采纳,获得20
7秒前
8秒前
8秒前
一一给一一的求助进行了留言
9秒前
隐形曼青应助胡豆采纳,获得10
9秒前
9秒前
10秒前
11秒前
科目三应助苹果紊采纳,获得10
11秒前
11秒前
Mry完成签到,获得积分10
11秒前
11完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
研友_ngJQzL完成签到,获得积分10
13秒前
13秒前
14秒前
Elan完成签到,获得积分10
14秒前
范范完成签到,获得积分20
15秒前
胡豆完成签到,获得积分10
15秒前
Akim应助廖少跑不快采纳,获得10
15秒前
莱特昊发布了新的文献求助10
16秒前
万能图书馆应助qianqina采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735