Monitoring of Membrane Integrity Based on Electrical Measurement and Deep Learning

稳健性(进化) 卷积神经网络 曝气 电压 深度学习 计算机科学 生物系统 人工智能 材料科学 工程类 化学 电气工程 废物管理 生物 基因 生物化学
作者
Qi Wang,Chang Dou,Changchun Xin,Xiuyan Li,Jie Wang,Ronghua Zhang,Xiaojie Duan,Zinan Guo,Min Sun,Jianming Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 8020-8029 被引量:2
标识
DOI:10.1109/jsen.2020.3047445
摘要

Membrane module integrity monitoring is essential in the water treatment process. Problems such as high cost and low sensitivity limit the development of existing detection methods. An intelligent detection method for membrane integrity based on array impedance measurement is proposed in this paper. The boundary voltage data are collected in real time through the designed electrical sensor array. A deep learning algorithm is used to analyze the degree of damage of the membrane based on the collected voltage data. Membrane integrity testing experiments are conducted for different water qualities (lake water and domestic sewage) under different aeration intensities and membrane fluxes. Detection models based on a convolutional neural network (CNN) and deep neural network (DNN) are built, and the identification results are compared with those of the average voltage method. The experiments show the following: 1) For the tests based on random samples of membranes under detection, the overall sensitivities of the CNN in the lake water experiment and domestic sewage experiment reach 97.3% and 98.5%, respectively, which are significantly higher than those of the DNN method (94.1% and 93.6%) and the average voltage method (87.4% and 77.4%). 2) When the membrane process is affected by the variation in the aeration intensity and membrane flux, the CNN still has the best robustness. Hence, the new method could stably and accurately reflect the level of membrane breakage, even mild damage to the membrane, under flow disturbance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
林齐发布了新的文献求助10
4秒前
流年完成签到,获得积分10
7秒前
tjfwg发布了新的文献求助10
8秒前
拼搏雨竹完成签到 ,获得积分10
8秒前
leslie发布了新的文献求助10
9秒前
科目三应助萌仔防守采纳,获得30
9秒前
蜗牛星星完成签到,获得积分10
10秒前
昶曜发布了新的文献求助10
11秒前
SS完成签到,获得积分0
12秒前
12秒前
13秒前
14秒前
scot完成签到,获得积分0
16秒前
阿星给我冲完成签到,获得积分10
16秒前
18秒前
英勇的老头完成签到,获得积分10
19秒前
桥豆抹茶完成签到,获得积分10
19秒前
19秒前
香蕉觅云应助Mercury采纳,获得10
19秒前
20秒前
鸡蛋布丁完成签到 ,获得积分10
21秒前
DX发布了新的文献求助10
23秒前
Cinderpelt完成签到,获得积分10
25秒前
小蘑菇应助bryceeluo采纳,获得10
26秒前
lll完成签到,获得积分10
26秒前
27秒前
慕青应助123456采纳,获得10
28秒前
shinysparrow应助烨伟采纳,获得80
28秒前
拉普拉斯妖完成签到,获得积分10
31秒前
白小黑发布了新的文献求助10
33秒前
欢快的芹菜完成签到,获得积分10
34秒前
脑洞疼应助迅速冥茗采纳,获得10
35秒前
35秒前
Jasper应助夜守采纳,获得10
37秒前
Akin完成签到,获得积分10
38秒前
聪明与摩羯关注了科研通微信公众号
38秒前
41秒前
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503