Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy

医学 梯度升压 决策树 机器学习 人工智能 随机森林 冲击波碎石术 分析 Boosting(机器学习) 外科 算法 碎石术 数据挖掘 计算机科学
作者
Seung Woo Yang,Yun Kyong Hyon,Hyun Seok Na,Long Jin,Jae Geun Lee,Jong Mok Park,Ji Yong Lee,Jongho Shin,Jae Sung Lim,Yong Gil Na,Kiwan Jeon,Taeyoung Ha,Jinbum Kim,Ki Hak Song
出处
期刊:BMC Urology [Springer Nature]
卷期号:20 (1) 被引量:25
标识
DOI:10.1186/s12894-020-00662-x
摘要

The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. We retrospectively reviewed the medical records of 358 patients who underwent SWL for urinary stone (kidney and upper-ureter stone) between 2015 and 2018 and evaluated the possible prognostic features, including patient population characteristics, urinary stone characteristics on a non-contrast, computed tomographic image. We performed 80% training set and 20% test set for the predictions of success and mainly used decision tree-based machine learning algorithms, such as random forest (RF), extreme gradient boosting trees (XGBoost), and light gradient boosting method (LightGBM). In machine learning analysis, the prediction accuracies for stone-free were 86.0, 87.5, and 87.9%, and those for one-session success were 78.0, 77.4, and 77.0% using RF, XGBoost, and LightGBM, respectively. In predictions for stone-free, LightGBM yielded the best accuracy and RF yielded the best one in those for one-session success among those methods. The sensitivity and specificity values for machine learning analytics are (0.74 to 0.78 and 0.92 to 0.93) for stone-free and (0.79 to 0.81 and 0.74 to 0.75) for one-session success, respectively. The area under curve (AUC) values for machine learning analytics are (0.84 to 0.85) for stone-free and (0.77 to 0.78) for one-session success and their 95% confidence intervals (CIs) are (0.730 to 0.933) and (0.673 to 0.866) in average of methods, respectively. We applied a selected machine learning analysis to predict the result after treatment of SWL for urinary stone. About 88% accurate machine learning based predictive model was evaluated. The importance of machine learning algorithm can give matched insights to domain knowledge on effective and influential factors for SWL success outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然雁凡完成签到,获得积分10
刚刚
顾jiu完成签到,获得积分10
1秒前
科研通AI5应助热依汗古丽采纳,获得10
1秒前
优秀剑愁完成签到 ,获得积分10
1秒前
敏感网络发布了新的文献求助50
2秒前
院士人启动完成签到,获得积分10
2秒前
3秒前
黄花菜完成签到 ,获得积分0
5秒前
5秒前
顾jiu发布了新的文献求助30
5秒前
Yimim完成签到,获得积分10
5秒前
6秒前
白菜完成签到,获得积分10
6秒前
7秒前
虚心山灵完成签到 ,获得积分20
7秒前
8秒前
白菜发布了新的文献求助30
9秒前
9秒前
xx发布了新的文献求助10
10秒前
Vii应助追寻的白安采纳,获得10
10秒前
科研通AI5应助Laus采纳,获得10
10秒前
小周发布了新的文献求助10
10秒前
万能图书馆应助自信鞯采纳,获得10
10秒前
SherlockLiu发布了新的文献求助30
11秒前
姚博士快毕业完成签到,获得积分10
12秒前
无语大王完成签到,获得积分10
12秒前
怡然的莫茗完成签到,获得积分10
13秒前
清秀的以云完成签到,获得积分20
14秒前
猫好好完成签到,获得积分10
15秒前
16秒前
hhzz完成签到,获得积分10
16秒前
16秒前
xhemers完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
17秒前
爱静静应助怡然的莫茗采纳,获得10
18秒前
19秒前
科研通AI5应助清秀的以云采纳,获得30
19秒前
李健的粉丝团团长应助xx采纳,获得10
21秒前
大豪子发布了新的文献求助30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808