Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy

医学 梯度升压 决策树 机器学习 人工智能 随机森林 冲击波碎石术 分析 Boosting(机器学习) 外科 算法 碎石术 数据挖掘 计算机科学
作者
Seung Woo Yang,Yun Kyong Hyon,Hyun Seok Na,Long Jin,Jae Geun Lee,Jong Mok Park,Ji Yong Lee,Jongho Shin,Jae Sung Lim,Yong Gil Na,Kiwan Jeon,Taeyoung Ha,Jinbum Kim,Ki Hak Song
出处
期刊:BMC Urology [Springer Nature]
卷期号:20 (1) 被引量:25
标识
DOI:10.1186/s12894-020-00662-x
摘要

The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. We retrospectively reviewed the medical records of 358 patients who underwent SWL for urinary stone (kidney and upper-ureter stone) between 2015 and 2018 and evaluated the possible prognostic features, including patient population characteristics, urinary stone characteristics on a non-contrast, computed tomographic image. We performed 80% training set and 20% test set for the predictions of success and mainly used decision tree-based machine learning algorithms, such as random forest (RF), extreme gradient boosting trees (XGBoost), and light gradient boosting method (LightGBM). In machine learning analysis, the prediction accuracies for stone-free were 86.0, 87.5, and 87.9%, and those for one-session success were 78.0, 77.4, and 77.0% using RF, XGBoost, and LightGBM, respectively. In predictions for stone-free, LightGBM yielded the best accuracy and RF yielded the best one in those for one-session success among those methods. The sensitivity and specificity values for machine learning analytics are (0.74 to 0.78 and 0.92 to 0.93) for stone-free and (0.79 to 0.81 and 0.74 to 0.75) for one-session success, respectively. The area under curve (AUC) values for machine learning analytics are (0.84 to 0.85) for stone-free and (0.77 to 0.78) for one-session success and their 95% confidence intervals (CIs) are (0.730 to 0.933) and (0.673 to 0.866) in average of methods, respectively. We applied a selected machine learning analysis to predict the result after treatment of SWL for urinary stone. About 88% accurate machine learning based predictive model was evaluated. The importance of machine learning algorithm can give matched insights to domain knowledge on effective and influential factors for SWL success outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sweet发布了新的文献求助10
刚刚
caitSith发布了新的文献求助10
刚刚
易拉罐罐完成签到,获得积分10
1秒前
清晨仪仪完成签到 ,获得积分10
1秒前
万能图书馆应助grass采纳,获得10
2秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
在水一方应助amanda采纳,获得10
6秒前
小鸟芋圆露露完成签到 ,获得积分0
6秒前
自信鞯完成签到,获得积分10
9秒前
修炼成绝完成签到,获得积分10
10秒前
第五轻柔完成签到,获得积分10
10秒前
mescal完成签到,获得积分10
11秒前
研友_Z7Xdl8完成签到,获得积分0
11秒前
11秒前
11秒前
可爱丸子完成签到,获得积分10
12秒前
Rinamamiya发布了新的文献求助50
12秒前
头上有犄角bb完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
pluto应助fafafa采纳,获得10
15秒前
17秒前
18秒前
18秒前
19秒前
璟晔完成签到,获得积分10
20秒前
22秒前
22秒前
醉熏的伊完成签到,获得积分10
23秒前
南歌子完成签到 ,获得积分10
24秒前
grass发布了新的文献求助10
24秒前
酥瓜完成签到 ,获得积分10
26秒前
asdfzxcv应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
asdfzxcv应助科研通管家采纳,获得10
28秒前
28秒前
asdfzxcv应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838