Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy

医学 梯度升压 决策树 机器学习 人工智能 随机森林 冲击波碎石术 分析 Boosting(机器学习) 外科 算法 碎石术 数据挖掘 计算机科学
作者
Seung Woo Yang,Yun Kyong Hyon,Hyun Seok Na,Long Jin,Jae Geun Lee,Jong Mok Park,Ji Yong Lee,Jongho Shin,Jae Sung Lim,Yong Gil Na,Kiwan Jeon,Taeyoung Ha,Jinbum Kim,Ki Hak Song
出处
期刊:BMC Urology [Springer Nature]
卷期号:20 (1) 被引量:25
标识
DOI:10.1186/s12894-020-00662-x
摘要

The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. We retrospectively reviewed the medical records of 358 patients who underwent SWL for urinary stone (kidney and upper-ureter stone) between 2015 and 2018 and evaluated the possible prognostic features, including patient population characteristics, urinary stone characteristics on a non-contrast, computed tomographic image. We performed 80% training set and 20% test set for the predictions of success and mainly used decision tree-based machine learning algorithms, such as random forest (RF), extreme gradient boosting trees (XGBoost), and light gradient boosting method (LightGBM). In machine learning analysis, the prediction accuracies for stone-free were 86.0, 87.5, and 87.9%, and those for one-session success were 78.0, 77.4, and 77.0% using RF, XGBoost, and LightGBM, respectively. In predictions for stone-free, LightGBM yielded the best accuracy and RF yielded the best one in those for one-session success among those methods. The sensitivity and specificity values for machine learning analytics are (0.74 to 0.78 and 0.92 to 0.93) for stone-free and (0.79 to 0.81 and 0.74 to 0.75) for one-session success, respectively. The area under curve (AUC) values for machine learning analytics are (0.84 to 0.85) for stone-free and (0.77 to 0.78) for one-session success and their 95% confidence intervals (CIs) are (0.730 to 0.933) and (0.673 to 0.866) in average of methods, respectively. We applied a selected machine learning analysis to predict the result after treatment of SWL for urinary stone. About 88% accurate machine learning based predictive model was evaluated. The importance of machine learning algorithm can give matched insights to domain knowledge on effective and influential factors for SWL success outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安珀完成签到,获得积分10
3秒前
庾傀斗完成签到,获得积分10
3秒前
5秒前
迷人的悒完成签到 ,获得积分10
6秒前
然大宝完成签到,获得积分10
7秒前
Jackie完成签到 ,获得积分20
7秒前
劲秉应助lifeline采纳,获得50
7秒前
10秒前
zen发布了新的文献求助10
13秒前
科研通AI2S应助zq00采纳,获得10
14秒前
小李吃梨发布了新的文献求助10
15秒前
雪无痕3074发布了新的文献求助10
15秒前
15秒前
天天快乐应助hao123采纳,获得10
16秒前
酷波er应助星期一采纳,获得10
17秒前
Renhong完成签到,获得积分10
17秒前
冰棍发布了新的文献求助10
20秒前
21秒前
21秒前
qianyuan发布了新的文献求助10
26秒前
科研通AI2S应助chenyutong采纳,获得10
29秒前
阳光香寒完成签到 ,获得积分10
29秒前
buno应助chenyutong采纳,获得10
29秒前
微微发布了新的文献求助10
29秒前
冯不言完成签到,获得积分10
31秒前
芮rich完成签到,获得积分10
32秒前
33秒前
33秒前
34秒前
35秒前
汉堡包应助qianyuan采纳,获得10
35秒前
ref:rain完成签到,获得积分10
36秒前
Tony12完成签到,获得积分10
36秒前
看看发布了新的文献求助10
37秒前
39秒前
JoySue发布了新的文献求助10
39秒前
41秒前
迷你的幻姬完成签到 ,获得积分10
42秒前
43秒前
43秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214658
求助须知:如何正确求助?哪些是违规求助? 2863274
关于积分的说明 8137904
捐赠科研通 2529457
什么是DOI,文献DOI怎么找? 1363721
科研通“疑难数据库(出版商)”最低求助积分说明 643908
邀请新用户注册赠送积分活动 616451