已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy

医学 梯度升压 决策树 机器学习 人工智能 随机森林 冲击波碎石术 分析 Boosting(机器学习) 外科 算法 碎石术 数据挖掘 计算机科学
作者
Seung Woo Yang,Yun Kyong Hyon,Hyun Seok Na,Long Jin,Jae Geun Lee,Jong Mok Park,Ji Yong Lee,Jongho Shin,Jae Sung Lim,Yong Gil Na,Kiwan Jeon,Taeyoung Ha,Jinbum Kim,Ki Hak Song
出处
期刊:BMC Urology [Springer Nature]
卷期号:20 (1) 被引量:25
标识
DOI:10.1186/s12894-020-00662-x
摘要

The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. We retrospectively reviewed the medical records of 358 patients who underwent SWL for urinary stone (kidney and upper-ureter stone) between 2015 and 2018 and evaluated the possible prognostic features, including patient population characteristics, urinary stone characteristics on a non-contrast, computed tomographic image. We performed 80% training set and 20% test set for the predictions of success and mainly used decision tree-based machine learning algorithms, such as random forest (RF), extreme gradient boosting trees (XGBoost), and light gradient boosting method (LightGBM). In machine learning analysis, the prediction accuracies for stone-free were 86.0, 87.5, and 87.9%, and those for one-session success were 78.0, 77.4, and 77.0% using RF, XGBoost, and LightGBM, respectively. In predictions for stone-free, LightGBM yielded the best accuracy and RF yielded the best one in those for one-session success among those methods. The sensitivity and specificity values for machine learning analytics are (0.74 to 0.78 and 0.92 to 0.93) for stone-free and (0.79 to 0.81 and 0.74 to 0.75) for one-session success, respectively. The area under curve (AUC) values for machine learning analytics are (0.84 to 0.85) for stone-free and (0.77 to 0.78) for one-session success and their 95% confidence intervals (CIs) are (0.730 to 0.933) and (0.673 to 0.866) in average of methods, respectively. We applied a selected machine learning analysis to predict the result after treatment of SWL for urinary stone. About 88% accurate machine learning based predictive model was evaluated. The importance of machine learning algorithm can give matched insights to domain knowledge on effective and influential factors for SWL success outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵凝竹完成签到 ,获得积分0
1秒前
Helene完成签到,获得积分10
1秒前
yihanghh完成签到 ,获得积分10
3秒前
Augustines完成签到,获得积分10
3秒前
Stella应助勤恳慕灵采纳,获得10
3秒前
认真浩宇发布了新的文献求助10
3秒前
3秒前
momo完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助leslie采纳,获得10
5秒前
6秒前
8秒前
G13完成签到,获得积分10
9秒前
on发布了新的文献求助10
9秒前
ZD应助皮飞111采纳,获得10
10秒前
11秒前
cm完成签到,获得积分10
12秒前
科研通AI6应助dlfg采纳,获得10
13秒前
LYM完成签到,获得积分10
14秒前
科研通AI2S应助sxmt123456789采纳,获得10
18秒前
虚心傲柔完成签到,获得积分10
19秒前
四月的海棠完成签到 ,获得积分10
19秒前
炒米粉完成签到,获得积分10
20秒前
芒果完成签到 ,获得积分10
21秒前
Criminology34举报薏仁求助涉嫌违规
21秒前
Hello应助腼腆的冬天采纳,获得10
25秒前
BowieHuang应助健康的半仙采纳,获得10
26秒前
27秒前
33秒前
34秒前
34秒前
zht完成签到,获得积分10
35秒前
Lemon完成签到 ,获得积分10
36秒前
谷雨发布了新的文献求助10
38秒前
39秒前
哈哈哈发布了新的文献求助10
40秒前
40秒前
Sk发布了新的文献求助10
43秒前
44秒前
XIXIXI完成签到 ,获得积分10
44秒前
LZYJJ完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576