亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy

医学 梯度升压 决策树 机器学习 人工智能 随机森林 冲击波碎石术 分析 Boosting(机器学习) 外科 算法 碎石术 数据挖掘 计算机科学
作者
Seung Woo Yang,Yun Kyong Hyon,Hyun Seok Na,Long Jin,Jae Geun Lee,Jong Mok Park,Ji Yong Lee,Jongho Shin,Jae Sung Lim,Yong Gil Na,Kiwan Jeon,Taeyoung Ha,Jinbum Kim,Ki Hak Song
出处
期刊:BMC Urology [BioMed Central]
卷期号:20 (1) 被引量:25
标识
DOI:10.1186/s12894-020-00662-x
摘要

The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencing the outcome by using machine learning methods. We retrospectively reviewed the medical records of 358 patients who underwent SWL for urinary stone (kidney and upper-ureter stone) between 2015 and 2018 and evaluated the possible prognostic features, including patient population characteristics, urinary stone characteristics on a non-contrast, computed tomographic image. We performed 80% training set and 20% test set for the predictions of success and mainly used decision tree-based machine learning algorithms, such as random forest (RF), extreme gradient boosting trees (XGBoost), and light gradient boosting method (LightGBM). In machine learning analysis, the prediction accuracies for stone-free were 86.0, 87.5, and 87.9%, and those for one-session success were 78.0, 77.4, and 77.0% using RF, XGBoost, and LightGBM, respectively. In predictions for stone-free, LightGBM yielded the best accuracy and RF yielded the best one in those for one-session success among those methods. The sensitivity and specificity values for machine learning analytics are (0.74 to 0.78 and 0.92 to 0.93) for stone-free and (0.79 to 0.81 and 0.74 to 0.75) for one-session success, respectively. The area under curve (AUC) values for machine learning analytics are (0.84 to 0.85) for stone-free and (0.77 to 0.78) for one-session success and their 95% confidence intervals (CIs) are (0.730 to 0.933) and (0.673 to 0.866) in average of methods, respectively. We applied a selected machine learning analysis to predict the result after treatment of SWL for urinary stone. About 88% accurate machine learning based predictive model was evaluated. The importance of machine learning algorithm can give matched insights to domain knowledge on effective and influential factors for SWL success outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助南充市第一中学采纳,获得10
2秒前
善学以致用应助HoraDorathy采纳,获得10
3秒前
Ying完成签到,获得积分10
15秒前
15秒前
hamzhi完成签到,获得积分10
18秒前
19秒前
21秒前
9fSucks发布了新的文献求助10
24秒前
桐桐应助三叔采纳,获得10
25秒前
和风完成签到 ,获得积分10
27秒前
31秒前
31秒前
Bella发布了新的文献求助10
35秒前
三叔发布了新的文献求助10
37秒前
三叔完成签到,获得积分0
43秒前
追云断月完成签到,获得积分10
54秒前
Bella发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
生姜批发刘哥完成签到 ,获得积分10
1分钟前
早点毕业完成签到 ,获得积分10
1分钟前
li关闭了li文献求助
1分钟前
云上人完成签到 ,获得积分10
1分钟前
南充市第一中学完成签到,获得积分10
1分钟前
struggling2026完成签到 ,获得积分10
1分钟前
明天见完成签到 ,获得积分10
1分钟前
9fSucks完成签到,获得积分10
2分钟前
Jasper应助AliEmbark采纳,获得10
2分钟前
2分钟前
嘻哈hang发布了新的文献求助10
2分钟前
领导范儿应助小王采纳,获得10
2分钟前
遇上就这样吧完成签到,获得积分0
2分钟前
小巧的语儿完成签到,获得积分10
2分钟前
yttang发布了新的文献求助10
2分钟前
Ray羽曦~完成签到 ,获得积分10
2分钟前
2分钟前
风起完成签到 ,获得积分10
2分钟前
AliEmbark发布了新的文献求助10
2分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144930
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791737
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622