材料科学
催化作用
阴极保护
过氧化氢
电化学
碳纤维
纳米技术
杂原子
电催化剂
化学工程
电极
组合化学
化学
有机化学
复合材料
戒指(化学)
物理化学
工程类
复合数
作者
Kun Jiang,Jiajun Zhao,Haotian Wang
标识
DOI:10.1002/adfm.202003321
摘要
Abstract Precise electrochemical synthesis under ambient conditions has provided emerging opportunities for renewable energy utilization. Among many promising systems, the production of hydrogen peroxide (H 2 O 2 ) from the cathodic oxygen reduction reaction (ORR) has attracted considerable interest in past decades due to the increasing market demands and the vital role of ORR in the electrocatalysis field. This work describes recent advances in cathodic materials for H 2 O 2 synthesis from 2e - ORR. By using Pt as a stereotype, the tuning knobs are overviewed, including the intrinsic binding strength of oxygenated species, the intermediate diffusion path and the isolation of Pt–Pt ensembles that enable 2e - ORR pathway from 4e - total reduction. This knowledge is successfully applied to other transition metal systems and leads to the discovery of more efficient alloy catalysts with balanced improvement on both activity and selectivity. In addition, mesostructure engineering and heteroatoms doping strategies on carbon‐based materials, which significantly boost the H 2 O 2 production efficiency as compared to intact carbon sites, are also reviewed. Finally, future directions and challenges of transferring developed catalysts from lab scale tests to pilot plant operations are briefly outlooked.
科研通智能强力驱动
Strongly Powered by AbleSci AI