Machine learning for genetic prediction of psychiatric disorders: a systematic review

机器学习 心理学 心理信息 人工智能 梅德林 自闭症 出版偏见 临床心理学 精神分裂症(面向对象编程) 神经性厌食 双相情感障碍 精神科 医学 饮食失调 荟萃分析 计算机科学 认知 内科学 法学 政治学
作者
Matthew Bracher‐Smith,Karen Crawford,Valentina Escott‐Price
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:26 (1): 70-79 被引量:117
标识
DOI:10.1038/s41380-020-0825-2
摘要

Machine learning methods have been employed to make predictions in psychiatry from genotypes, with the potential to bring improved prediction of outcomes in psychiatric genetics; however, their current performance is unclear. We aim to systematically review machine learning methods for predicting psychiatric disorders from genetics alone and evaluate their discrimination, bias and implementation. Medline, PsycInfo, Web of Science and Scopus were searched for terms relating to genetics, psychiatric disorders and machine learning, including neural networks, random forests, support vector machines and boosting, on 10 September 2019. Following PRISMA guidelines, articles were screened for inclusion independently by two authors, extracted, and assessed for risk of bias. Overall, 63 full texts were assessed from a pool of 652 abstracts. Data were extracted for 77 models of schizophrenia, bipolar, autism or anorexia across 13 studies. Performance of machine learning methods was highly varied (0.48–0.95 AUC) and differed between schizophrenia (0.54–0.95 AUC), bipolar (0.48–0.65 AUC), autism (0.52–0.81 AUC) and anorexia (0.62–0.69 AUC). This is likely due to the high risk of bias identified in the study designs and analysis for reported results. Choices for predictor selection, hyperparameter search and validation methodology, and viewing of the test set during training were common causes of high risk of bias in analysis. Key steps in model development and validation were frequently not performed or unreported. Comparison of discrimination across studies was constrained by heterogeneity of predictors, outcome and measurement, in addition to sample overlap within and across studies. Given widespread high risk of bias and the small number of studies identified, it is important to ensure established analysis methods are adopted. We emphasise best practices in methodology and reporting for improving future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助不安平凡采纳,获得10
2秒前
lmfffff完成签到,获得积分10
4秒前
nullsci完成签到,获得积分10
6秒前
6秒前
Choo完成签到,获得积分10
10秒前
壮观以松发布了新的文献求助10
11秒前
12秒前
16秒前
17秒前
17秒前
专注大神完成签到 ,获得积分10
17秒前
18秒前
19秒前
麻油球完成签到,获得积分10
19秒前
啾啾完成签到,获得积分10
20秒前
Drone发布了新的文献求助10
21秒前
22秒前
苗儿发布了新的文献求助10
23秒前
28秒前
Owen应助tao采纳,获得10
30秒前
苗儿完成签到,获得积分10
32秒前
haosu应助纪复天采纳,获得10
34秒前
coolru完成签到,获得积分10
35秒前
NexusExplorer应助科研达人采纳,获得30
35秒前
35秒前
调调发布了新的文献求助10
36秒前
LYSnow7完成签到 ,获得积分10
37秒前
38秒前
38秒前
wang关注了科研通微信公众号
38秒前
39秒前
杳鸢应助我爱小白贺采纳,获得20
40秒前
企鹅完成签到,获得积分10
42秒前
颜鑫发布了新的文献求助10
42秒前
大方的寒烟完成签到,获得积分10
42秒前
tao发布了新的文献求助10
43秒前
kingwill应助可意采纳,获得20
43秒前
泥撑完成签到,获得积分10
43秒前
刻苦从阳发布了新的文献求助10
45秒前
烂漫的涔雨完成签到 ,获得积分10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461213
求助须知:如何正确求助?哪些是违规求助? 3054925
关于积分的说明 9045546
捐赠科研通 2744821
什么是DOI,文献DOI怎么找? 1505702
科研通“疑难数据库(出版商)”最低求助积分说明 695786
邀请新用户注册赠送积分活动 695205