MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination

催化作用 乙炔 离子液体 化学 空间速度 无机化学 吸附 化学工程 有机化学 选择性 工程类
作者
Yan Wang,Yao Nian,Jinli Zhang,Wei Li,You Han
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:479: 110612-110612 被引量:30
标识
DOI:10.1016/j.mcat.2019.110612
摘要

The development of environmentally friendly nonmercuric catalysts for acetylene hydrochlorination reaction mainly focuses on precious metal like Au, Pd and Ru. Non-precious metal based catalyst had much lower activity and stability in this reaction, limiting its practical application. In this work, a novel ionic liquid improved Cu-based heterogeneous catalyst has been designed and successfully synthesized, and it showed the highest catalytic activity and stability among the reported non-precious metal based catalyst used in the reaction of acetylene hydrochlorination. Among many ionic liquids, the (Methoxymethyl) triphenylphosphonium chloride (MOMTPPC) ionic liquid improved Cu-based heterogeneous catalysts has the highest catalytic performance. The optimal 15%[email protected]%MOMTPPC/SAC achieved the conversion of C2H2 of 92.2% under the reaction condition of T=180℃, GHSV (C2H2) of 180 h−1 and VHCl/VC2H2 = 1.2. And under the industrial GHSV (C2H2) of 36 h−1, C2H2 conversion maintains above 98.7% within 360 h. A series of experimental characterizations combined with theoretical calculations indicated that the addition of MOMTPPC ionic liquid can inhibit carbon deposition, prevent the aggregation of Cu species, enhance the dispersion of Cu species and the adsorption of HCl reactant. The stabilization effect of MOMTPPC to Cu is mainly through the hydrogen bond, steric hindrance of MOMTPPC cation and electrostatic effect. The development of [email protected]/SAC catalyst with high efficiency shed light on the potential of replacing the toxic mercuric catalyst with non-precious Cu-based catalyst in the polyvinyl chloride (PVC) industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助纯真抽屉采纳,获得10
1秒前
1秒前
笑笑发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
Hello应助cora采纳,获得10
4秒前
汉唐精彩完成签到,获得积分10
5秒前
5秒前
6秒前
田茂青完成签到,获得积分10
6秒前
damian发布了新的文献求助30
6秒前
6秒前
聪明芒果完成签到,获得积分10
6秒前
Vvvvvvv应助虫二先生采纳,获得10
6秒前
西大研究生完成签到 ,获得积分10
6秒前
7秒前
7秒前
呆呆完成签到,获得积分10
7秒前
左一酱完成签到 ,获得积分10
8秒前
平淡南霜发布了新的文献求助10
8秒前
Sweet关注了科研通微信公众号
8秒前
8秒前
赘婿应助wangfu采纳,获得10
9秒前
9秒前
9秒前
pipge完成签到,获得积分20
9秒前
10秒前
澳澳发布了新的文献求助10
10秒前
11秒前
清脆的映天完成签到,获得积分10
11秒前
yl驳回了sweetbearm应助
11秒前
隐形曼青应助2鱼采纳,获得10
11秒前
通~发布了新的文献求助10
11秒前
香蕉觅云应助junzilan采纳,获得10
12秒前
张老涵发布了新的文献求助10
12秒前
灌饼发布了新的文献求助30
12秒前
罗实发布了新的文献求助10
12秒前
张张发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794