Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019)

聚类分析 空气污染 层次聚类 计算机科学 数据挖掘 环境科学 机器学习 有机化学 化学
作者
Prinolan Govender,Venkataraman Sivakumar
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:11 (1): 40-56 被引量:250
标识
DOI:10.1016/j.apr.2019.09.009
摘要

Clustering is an explorative data analysis technique used for investigating the underlying structure in the data. It described as the grouping of objects, where the objects share similar characteristics. Over the past 50 years, clustering has been widely applied to atmospheric science data in particular, climate and meteorological data. Since the 1980's, air pollution studies began employing clustering techniques, and has since been successful, and the aim of this paper is to provide a review of such studies. In particular, two well known and commonly used clustering methods i.e. k-means and hierarchical agglomerative, that have been applied in air pollution studies have been reviewed. Air pollution data from two sources i.e. ground-based monitoring stations and air mass trajectories depicting pollutant pathways, have been included. Research works that have focused on spatio-temporal characteristics of air pollutants, pollutant behavior in terms of source, transport pathways, apportionment and links to meteorological conditions, comprise much of the research works reviewed. A total of 100 research articles were included during the period of 1980–2019. The purpose of the clustering approach, the specific technique used and the data to which it was applied constitute much of the discussion presented in this review. Overall, the k-means technique has been extensively used among the studies, while average and Ward linkages were the most frequently applied hierarchical clustering techniques. Reviews of clustering techniques applied in air pollution studies are currently lacking and this paper aims to fill that gap. In addition, and to the best of the authors' knowledge, this is the first review dedicated to clustering applications in air pollution studies, and the first that covers the longest time span (1980–2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crane完成签到,获得积分10
刚刚
yoona发布了新的文献求助10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
Rita应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Dean应助科研通管家采纳,获得50
3秒前
华仔应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
13783178133完成签到,获得积分10
5秒前
5秒前
Deyong完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
doctor.p发布了新的文献求助10
7秒前
yoona完成签到,获得积分10
7秒前
8秒前
蓝蓝的天空完成签到 ,获得积分10
9秒前
lzh发布了新的文献求助10
9秒前
LL发布了新的文献求助10
9秒前
9秒前
xxxyyyxxx发布了新的文献求助10
10秒前
搜集达人应助ZXCCXZ采纳,获得10
10秒前
科研通AI2S应助无奈母鸡采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321