Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019)

聚类分析 空气污染 层次聚类 计算机科学 数据挖掘 环境科学 机器学习 有机化学 化学
作者
Prinolan Govender,Venkataraman Sivakumar
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:11 (1): 40-56 被引量:250
标识
DOI:10.1016/j.apr.2019.09.009
摘要

Clustering is an explorative data analysis technique used for investigating the underlying structure in the data. It described as the grouping of objects, where the objects share similar characteristics. Over the past 50 years, clustering has been widely applied to atmospheric science data in particular, climate and meteorological data. Since the 1980's, air pollution studies began employing clustering techniques, and has since been successful, and the aim of this paper is to provide a review of such studies. In particular, two well known and commonly used clustering methods i.e. k-means and hierarchical agglomerative, that have been applied in air pollution studies have been reviewed. Air pollution data from two sources i.e. ground-based monitoring stations and air mass trajectories depicting pollutant pathways, have been included. Research works that have focused on spatio-temporal characteristics of air pollutants, pollutant behavior in terms of source, transport pathways, apportionment and links to meteorological conditions, comprise much of the research works reviewed. A total of 100 research articles were included during the period of 1980–2019. The purpose of the clustering approach, the specific technique used and the data to which it was applied constitute much of the discussion presented in this review. Overall, the k-means technique has been extensively used among the studies, while average and Ward linkages were the most frequently applied hierarchical clustering techniques. Reviews of clustering techniques applied in air pollution studies are currently lacking and this paper aims to fill that gap. In addition, and to the best of the authors' knowledge, this is the first review dedicated to clustering applications in air pollution studies, and the first that covers the longest time span (1980–2019).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Felix发布了新的文献求助10
刚刚
荣荣发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
开朗灯泡发布了新的文献求助10
1秒前
Inory007发布了新的文献求助10
1秒前
去银行整点金条完成签到 ,获得积分10
2秒前
天青111发布了新的文献求助30
2秒前
Yi完成签到,获得积分10
2秒前
非酋发布了新的文献求助30
2秒前
2秒前
响子完成签到,获得积分10
2秒前
3秒前
健壮念寒发布了新的文献求助10
3秒前
3秒前
走走应助森葵采纳,获得10
3秒前
瑞瑞发布了新的文献求助10
4秒前
one发布了新的文献求助10
4秒前
syh发布了新的文献求助10
4秒前
机灵亦旋发布了新的文献求助30
4秒前
Maxw完成签到,获得积分10
4秒前
qiang完成签到,获得积分10
5秒前
Jasper应助吉鲁转圈圈采纳,获得10
5秒前
香蕉觅云应助dongdong采纳,获得10
5秒前
CHDB完成签到,获得积分10
5秒前
思源应助两条鱼采纳,获得10
5秒前
5秒前
剑来完成签到,获得积分10
5秒前
6秒前
wwww完成签到 ,获得积分0
6秒前
树叶发布了新的文献求助10
6秒前
luckyseven完成签到,获得积分10
7秒前
7秒前
7秒前
123456789完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
非酋完成签到,获得积分20
9秒前
10秒前
asdf完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707