Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019)

聚类分析 空气污染 层次聚类 计算机科学 数据挖掘 环境科学 机器学习 有机化学 化学
作者
Prinolan Govender,Venkataraman Sivakumar
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:11 (1): 40-56 被引量:250
标识
DOI:10.1016/j.apr.2019.09.009
摘要

Clustering is an explorative data analysis technique used for investigating the underlying structure in the data. It described as the grouping of objects, where the objects share similar characteristics. Over the past 50 years, clustering has been widely applied to atmospheric science data in particular, climate and meteorological data. Since the 1980's, air pollution studies began employing clustering techniques, and has since been successful, and the aim of this paper is to provide a review of such studies. In particular, two well known and commonly used clustering methods i.e. k-means and hierarchical agglomerative, that have been applied in air pollution studies have been reviewed. Air pollution data from two sources i.e. ground-based monitoring stations and air mass trajectories depicting pollutant pathways, have been included. Research works that have focused on spatio-temporal characteristics of air pollutants, pollutant behavior in terms of source, transport pathways, apportionment and links to meteorological conditions, comprise much of the research works reviewed. A total of 100 research articles were included during the period of 1980–2019. The purpose of the clustering approach, the specific technique used and the data to which it was applied constitute much of the discussion presented in this review. Overall, the k-means technique has been extensively used among the studies, while average and Ward linkages were the most frequently applied hierarchical clustering techniques. Reviews of clustering techniques applied in air pollution studies are currently lacking and this paper aims to fill that gap. In addition, and to the best of the authors' knowledge, this is the first review dedicated to clustering applications in air pollution studies, and the first that covers the longest time span (1980–2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三发布了新的文献求助10
刚刚
1秒前
江莱发布了新的文献求助10
2秒前
忆枫发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
4秒前
笨笨芯发布了新的文献求助10
7秒前
lvv完成签到,获得积分10
7秒前
7秒前
10秒前
liulongchao完成签到,获得积分10
11秒前
善学以致用应助顺心若魔采纳,获得10
12秒前
Jsl完成签到,获得积分10
13秒前
asdasd0发布了新的文献求助10
14秒前
科研混子发布了新的文献求助10
14秒前
15秒前
三笠完成签到,获得积分10
16秒前
19秒前
20秒前
20秒前
自由凌丝完成签到,获得积分10
20秒前
小马甲应助asdasd0采纳,获得10
20秒前
21秒前
LFY完成签到,获得积分10
21秒前
22秒前
荷包蛋关注了科研通微信公众号
23秒前
HXY发布了新的文献求助10
24秒前
鲤鱼鸽子完成签到,获得积分0
24秒前
24秒前
Orange应助江幻天采纳,获得10
24秒前
顺心若魔发布了新的文献求助10
25秒前
科研通AI2S应助顾霜凌采纳,获得10
25秒前
25秒前
26秒前
WAHAHAoo发布了新的文献求助10
26秒前
yyst完成签到,获得积分10
27秒前
王辰宁完成签到,获得积分10
27秒前
科研通AI5应助尊敬代亦采纳,获得10
28秒前
HXY完成签到,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425