Linear predictive coding distinguishes spectral EEG features of Parkinson's disease

脑电图 接收机工作特性 帕金森病 模式识别(心理学) 诊断准确性 计算机科学 人工智能 左旋多巴 曲线下面积 分类器(UML) 医学 疾病 机器学习 内科学 精神科
作者
Md Fahim Anjum,Soura Dasgupta,Raghuraman Mudumbai,Arun Singh,James F. Cavanagh,Nandakumar S. Narayanan
出处
期刊:Parkinsonism & Related Disorders [Elsevier]
卷期号:79: 79-85 被引量:80
标识
DOI:10.1016/j.parkreldis.2020.08.001
摘要

We have developed and validated a novel EEG-based signal processing approach to distinguish PD and control patients: Linear-predictive-coding EEG Algorithm for PD (LEAPD). This method efficiently encodes EEG time series into features that can detect PD in a computationally fast manner amenable to real time applications.We included a total of 41 PD patients and 41 demographically-matched controls from New Mexico and Iowa. Data for all participants from New Mexico (27 PD patients and 27 controls) were used to evaluate in-sample LEAPD performance, with extensive cross-validation. Participants from Iowa (14 PD patients and 14 controls) were used for out-of-sample tests. Our method utilized data from six EEG leads which were as little as 2 min long.For the in-sample dataset, LEAPD differentiated PD patients from controls with 85.3 ± 0.1% diagnostic accuracy, 93.3 ± 0.5% area under the receiver operating characteristics curve (AUC), 87.9 ± 0.9% sensitivity, and 82.7 ± 1.1% specificity, with multiple cross-validations. After head-to-head comparison with state-of-the-art methods using our dataset, LEAPD showed a 13% increase in accuracy and a 15.5% increase in AUC. When the trained classifier was applied to a distinct out-of-sample dataset, LEAPD showed reliable performance with 85.7% diagnostic accuracy, 85.2% AUC, 85.7% sensitivity, and 85.7% specificity. No statistically significant effect of levodopa-ON and levodopa-OFF sessions were found.We describe LEAPD, an efficient algorithm that is suitable for real time application and captures spectral EEG features using few parameters and reliably differentiates PD patients from demographically-matched controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助peng采纳,获得10
刚刚
1秒前
2秒前
wealan发布了新的文献求助10
2秒前
3秒前
li完成签到,获得积分10
4秒前
余姓懒完成签到,获得积分10
4秒前
4秒前
111发布了新的文献求助10
5秒前
jiao发布了新的文献求助10
5秒前
strainf完成签到,获得积分10
7秒前
塔塔饼发布了新的文献求助10
7秒前
7秒前
Lian完成签到,获得积分10
8秒前
王振强完成签到,获得积分10
8秒前
幻梦境完成签到,获得积分10
8秒前
9秒前
myth完成签到,获得积分10
9秒前
liuhuan发布了新的文献求助10
9秒前
慕青应助XIEMIN采纳,获得10
9秒前
熊蕾发布了新的文献求助10
10秒前
豆腐kkkkk发布了新的文献求助10
12秒前
七七发布了新的文献求助10
13秒前
14秒前
myth发布了新的文献求助10
14秒前
15秒前
浩多多完成签到,获得积分10
15秒前
花痴的小松鼠完成签到 ,获得积分10
17秒前
17秒前
nightmare完成签到,获得积分10
18秒前
着急的友绿完成签到,获得积分10
18秒前
19秒前
痴情的梦玉完成签到 ,获得积分10
19秒前
半斤完成签到,获得积分10
19秒前
科目三应助萧一江采纳,获得10
19秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
19秒前
19秒前
19秒前
香蕉觅云应助柯南采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557