A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data

蒙特卡罗方法 马尔科夫蒙特卡洛 计算机科学 人工神经网络 算法 机器学习 人工智能 数据集 贝叶斯概率 数据挖掘 统计 数学 地质学 古生物学 构造盆地
作者
Darío Graña,Leonardo Azevedo,Mingliang Liu
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:85 (4): WA41-WA52 被引量:71
标识
DOI:10.1190/geo2019-0405.1
摘要

Among the large variety of mathematical and computational methods for estimating reservoir properties such as facies and petrophysical variables from geophysical data, deep machine-learning algorithms have gained significant popularity for their ability to obtain accurate solutions for geophysical inverse problems in which the physical models are partially unknown. Solutions of classification and inversion problems are generally not unique, and uncertainty quantification studies are required to quantify the uncertainty in the model predictions and determine the precision of the results. Probabilistic methods, such as Monte Carlo approaches, provide a reliable approach for capturing the variability of the set of possible models that match the measured data. Here, we focused on the classification of facies from seismic data and benchmarked the performance of three different algorithms: recurrent neural network, Monte Carlo acceptance/rejection sampling, and Markov chain Monte Carlo. We tested and validated these approaches at the well locations by comparing classification predictions to the reference facies profile. The accuracy of the classification results is defined as the mismatch between the predictions and the log facies profile. Our study found that when the training data set of the neural network is large enough and the prior information about the transition probabilities of the facies in the Monte Carlo approach is not informative, machine-learning methods lead to more accurate solutions; however, the uncertainty of the solution might be underestimated. When some prior knowledge of the facies model is available, for example, from nearby wells, Monte Carlo methods provide solutions with similar accuracy to the neural network and allow a more robust quantification of the uncertainty, of the solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助专注乐巧采纳,获得10
刚刚
自信晟睿发布了新的文献求助10
刚刚
刚刚
1秒前
七里香完成签到 ,获得积分10
1秒前
handsomecat关注了科研通微信公众号
1秒前
细心映寒完成签到 ,获得积分10
1秒前
1秒前
fff完成签到,获得积分10
1秒前
领导范儿应助MJQ采纳,获得100
1秒前
2秒前
Owen应助世界尽头采纳,获得10
2秒前
echolan发布了新的文献求助10
3秒前
SID完成签到,获得积分10
3秒前
中九完成签到 ,获得积分10
3秒前
Rrr完成签到,获得积分10
3秒前
hehuan0520完成签到,获得积分10
3秒前
3秒前
打打应助chinning采纳,获得10
3秒前
桐桐应助wangyanyan采纳,获得10
4秒前
4秒前
zzznznnn发布了新的文献求助10
4秒前
jogrgr发布了新的文献求助10
5秒前
sun发布了新的文献求助10
5秒前
布鲁鲁发布了新的文献求助10
5秒前
自信晟睿完成签到,获得积分10
5秒前
酷波er应助哒哒采纳,获得10
6秒前
6秒前
沉默乐荷完成签到,获得积分10
6秒前
rstorz应助皮尤尤采纳,获得10
6秒前
sweetbearm应助小离采纳,获得10
6秒前
何青岚关注了科研通微信公众号
7秒前
doudou完成签到,获得积分20
7秒前
李健的小迷弟应助潦草采纳,获得10
7秒前
8秒前
8秒前
8秒前
柒八染完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759