计算机科学
热致变色
光学材料
材料科学
光电子学
有机化学
化学
摘要
This chapter discusses the technological application of a class of materials with a chameleon-like nature, that is, they exhibit the properties of metals under certain conditions of temperature and pressure, and semiconductor-to-dielectric properties under other conditions. Many materials exhibit this behavior, most notably the transition metal oxides and sulfides. Typically, the transition from one state to another in transition metal oxides is accompanied by a sharp change in electrical conductivity (as large as 10{sup 7} in some oxides of vanadium), as well as changes in other physical properties such as crystalline symmetry. The changes in electrical conductivity alter, in turn, IR transmittance, and some of these effects extend into the visible spectrum. A material such as this, whose transition occurs at the appropriate temperature, would be useful for solar energy control in buildings. For example, a coating of thermochromic (TC) material on glass would transmit solar energy at temperatures below its transition temperature (T{sub t}), and when the temperature rises above T{sub t}, the TC material would reflect the incident solar energy. Thus, solar influx would be high at low ambient temperature and low at high temperature. Though very few of these materials have T{sub t} in the range required more » for such an application, one can adjust T{sub t} by using dopants. Many models have been developed to explain the transition mechanism in TC materials, especially in the vanadium oxides, and the authors review some of these theories here. They also discuss thermochromism in stoichiometric compounds and in doped compounds and present the results of a program to dope VO{sub 2} for a solar control glazing applications. Tungsten-doped VO{sub 2} thin films with useful T{sub t} ({approx} 10 to 18 C) were routinely deposited on glass substrates. The chapter closes with a discussion of the performance of these films and their commercial applicability. « less
科研通智能强力驱动
Strongly Powered by AbleSci AI