亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation

医学 辅助 口译(哲学) 医学物理学 核医学 放射科 计算机科学 哲学 语言学 程序设计语言
作者
Ori Preis,Michael A. Blake,James A. Scott
出处
期刊:Radiology [Radiological Society of North America]
卷期号:258 (3): 714-721 被引量:22
标识
DOI:10.1148/radiol.10100547
摘要

To assess the performance of an artificial neural network in the evaluation of fluorine 18 fluorodeoxyglucose (FDG) uptake in the liver, compared with the results of expert interpretation of abdominal liver magnetic resonance (MR) images.The study was approved by the institutional human research committee and was HIPAA compliant, with waiver of informed consent. Digital data from positron emission tomographic (PET)/computed tomographic (CT) examinations, along with patient demographics, were obtained from 98 consecutive patients who underwent both whole-body PET/CT examinations and liver MR imaging examinations within 2 months. Interpretations of the scans from PET/CT examinations by trained neural networks were cross-classified with expert interpretations of the findings on images from MR examinations for intrahepatic benignity or malignancy. Receiver operating characteristic (ROC) curves were obtained for the designed networks. The significance of the difference between neural network ROC curves and the ROC curves detailing the performance of two expert blinded observers in the interpretation of liver FDG uptake was determined.A neural network incorporating lesion data demonstrated an ROC curve with an area under the curve (AUC) of 0.905 (standard error, 0.0370). A network independent of lesion data demonstrated an ROC curve with an AUC of 0.896 (standard error, 0.0386). These results compare favorably with results of expert blinded observers 1 and 2 who demonstrated ROCs with AUCs of 0.786 (standard error, 0.0522) and 0.796 (standard error, 0.0514), respectively. Following unblinding to network data, the AUCs for readers 1 and 2 improved to 0.924 (standard error, 0.0335) and 0.881 (standard error, 0.0409), respectively.Computers running artificial neural networks employing PET/CT scan data are sensitive and specific in the designation of the presence of intrahepatic malignancy, with comparison with interpretation by expert observers. When used in conjunction with human expertise, network data improve accuracy of the human interpreter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
Raunio发布了新的文献求助10
21秒前
舒服的幼荷完成签到,获得积分10
31秒前
34秒前
39秒前
尤里有气完成签到,获得积分10
55秒前
Jenny发布了新的文献求助10
1分钟前
Jenny完成签到,获得积分10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
hui发布了新的文献求助30
3分钟前
4分钟前
研友_VZG7GZ应助sy采纳,获得10
4分钟前
xiaofeixia完成签到 ,获得积分10
4分钟前
wada3n完成签到,获得积分10
5分钟前
5分钟前
我很好完成签到 ,获得积分10
6分钟前
bkagyin应助中原第一深情采纳,获得10
6分钟前
elsa622完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
情怀应助RC采纳,获得10
7分钟前
7分钟前
红火完成签到 ,获得积分10
7分钟前
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
浔初先生完成签到,获得积分10
8分钟前
胖小羊完成签到 ,获得积分10
8分钟前
8分钟前
RC发布了新的文献求助10
8分钟前
8分钟前
8分钟前
自律发布了新的文献求助10
9分钟前
纯真的柔发布了新的文献求助10
9分钟前
李健应助纯真的柔采纳,获得10
9分钟前
BowieHuang应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633344
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723