已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation

医学 辅助 口译(哲学) 医学物理学 核医学 放射科 计算机科学 语言学 哲学 程序设计语言
作者
Ori Preis,Michael A. Blake,James A. Scott
出处
期刊:Radiology [Radiological Society of North America]
卷期号:258 (3): 714-721 被引量:22
标识
DOI:10.1148/radiol.10100547
摘要

To assess the performance of an artificial neural network in the evaluation of fluorine 18 fluorodeoxyglucose (FDG) uptake in the liver, compared with the results of expert interpretation of abdominal liver magnetic resonance (MR) images.The study was approved by the institutional human research committee and was HIPAA compliant, with waiver of informed consent. Digital data from positron emission tomographic (PET)/computed tomographic (CT) examinations, along with patient demographics, were obtained from 98 consecutive patients who underwent both whole-body PET/CT examinations and liver MR imaging examinations within 2 months. Interpretations of the scans from PET/CT examinations by trained neural networks were cross-classified with expert interpretations of the findings on images from MR examinations for intrahepatic benignity or malignancy. Receiver operating characteristic (ROC) curves were obtained for the designed networks. The significance of the difference between neural network ROC curves and the ROC curves detailing the performance of two expert blinded observers in the interpretation of liver FDG uptake was determined.A neural network incorporating lesion data demonstrated an ROC curve with an area under the curve (AUC) of 0.905 (standard error, 0.0370). A network independent of lesion data demonstrated an ROC curve with an AUC of 0.896 (standard error, 0.0386). These results compare favorably with results of expert blinded observers 1 and 2 who demonstrated ROCs with AUCs of 0.786 (standard error, 0.0522) and 0.796 (standard error, 0.0514), respectively. Following unblinding to network data, the AUCs for readers 1 and 2 improved to 0.924 (standard error, 0.0335) and 0.881 (standard error, 0.0409), respectively.Computers running artificial neural networks employing PET/CT scan data are sensitive and specific in the designation of the presence of intrahepatic malignancy, with comparison with interpretation by expert observers. When used in conjunction with human expertise, network data improve accuracy of the human interpreter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
清澈水眸发布了新的文献求助10
5秒前
Aniya_Shine完成签到 ,获得积分10
9秒前
fang完成签到,获得积分10
10秒前
刻苦的尔白完成签到,获得积分10
12秒前
隐形曼青应助Azhe采纳,获得10
19秒前
不摇碧莲发布了新的文献求助10
20秒前
背书强完成签到 ,获得积分10
24秒前
852应助嗯呐采纳,获得10
27秒前
29秒前
33秒前
37秒前
ljq完成签到,获得积分10
38秒前
40秒前
41秒前
43秒前
Azhe发布了新的文献求助10
44秒前
细心映寒完成签到 ,获得积分10
45秒前
49秒前
51秒前
完美世界应助不准吃烤肉采纳,获得10
51秒前
frap完成签到,获得积分10
57秒前
橙橙完成签到,获得积分10
57秒前
58秒前
复苏1234511完成签到 ,获得积分10
1分钟前
考博圣体完成签到 ,获得积分10
1分钟前
许大脚完成签到 ,获得积分10
1分钟前
1分钟前
Kyros完成签到 ,获得积分10
1分钟前
1分钟前
嗯呐发布了新的文献求助10
1分钟前
可爱的函函应助清澈水眸采纳,获得10
1分钟前
勤恳的凌蝶完成签到 ,获得积分10
1分钟前
1004发布了新的文献求助30
1分钟前
帅气的小兔子完成签到 ,获得积分10
1分钟前
wx完成签到 ,获得积分20
1分钟前
哇呀呀完成签到 ,获得积分10
1分钟前
1分钟前
shuhaha完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948681
关于积分的说明 8541715
捐赠科研通 2624564
什么是DOI,文献DOI怎么找? 1436318
科研通“疑难数据库(出版商)”最低求助积分说明 665845
邀请新用户注册赠送积分活动 651792