Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation

医学 辅助 口译(哲学) 医学物理学 核医学 放射科 计算机科学 语言学 哲学 程序设计语言
作者
Ori Preis,Michael A. Blake,James A. Scott
出处
期刊:Radiology [Radiological Society of North America]
卷期号:258 (3): 714-721 被引量:22
标识
DOI:10.1148/radiol.10100547
摘要

To assess the performance of an artificial neural network in the evaluation of fluorine 18 fluorodeoxyglucose (FDG) uptake in the liver, compared with the results of expert interpretation of abdominal liver magnetic resonance (MR) images.The study was approved by the institutional human research committee and was HIPAA compliant, with waiver of informed consent. Digital data from positron emission tomographic (PET)/computed tomographic (CT) examinations, along with patient demographics, were obtained from 98 consecutive patients who underwent both whole-body PET/CT examinations and liver MR imaging examinations within 2 months. Interpretations of the scans from PET/CT examinations by trained neural networks were cross-classified with expert interpretations of the findings on images from MR examinations for intrahepatic benignity or malignancy. Receiver operating characteristic (ROC) curves were obtained for the designed networks. The significance of the difference between neural network ROC curves and the ROC curves detailing the performance of two expert blinded observers in the interpretation of liver FDG uptake was determined.A neural network incorporating lesion data demonstrated an ROC curve with an area under the curve (AUC) of 0.905 (standard error, 0.0370). A network independent of lesion data demonstrated an ROC curve with an AUC of 0.896 (standard error, 0.0386). These results compare favorably with results of expert blinded observers 1 and 2 who demonstrated ROCs with AUCs of 0.786 (standard error, 0.0522) and 0.796 (standard error, 0.0514), respectively. Following unblinding to network data, the AUCs for readers 1 and 2 improved to 0.924 (standard error, 0.0335) and 0.881 (standard error, 0.0409), respectively.Computers running artificial neural networks employing PET/CT scan data are sensitive and specific in the designation of the presence of intrahepatic malignancy, with comparison with interpretation by expert observers. When used in conjunction with human expertise, network data improve accuracy of the human interpreter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
yanyimeng发布了新的文献求助20
4秒前
ahshdh完成签到,获得积分10
5秒前
Zyhaou完成签到,获得积分10
6秒前
卡皮巴拉发布了新的文献求助10
7秒前
8秒前
nini发布了新的文献求助10
8秒前
9秒前
9秒前
徐志豪发布了新的文献求助10
9秒前
9秒前
11秒前
linmo发布了新的文献求助10
14秒前
高铭泽发布了新的文献求助10
14秒前
gyl发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
情怀应助zzz_yue采纳,获得10
18秒前
18秒前
冷傲菠萝发布了新的文献求助10
18秒前
xiachengcs发布了新的文献求助30
19秒前
19秒前
徐志豪完成签到,获得积分10
20秒前
21秒前
世界需要我完成签到,获得积分10
22秒前
swat发布了新的文献求助10
23秒前
23秒前
24秒前
星辰大海应助xiachengcs采纳,获得30
24秒前
cx发布了新的文献求助10
25秒前
SiO2发布了新的文献求助10
26秒前
鸣笛应助Messi采纳,获得10
26秒前
xing完成签到,获得积分10
26秒前
blacksmith0发布了新的文献求助10
26秒前
timo发布了新的文献求助10
26秒前
战斗暴龙兽完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578