Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation

医学 辅助 口译(哲学) 医学物理学 核医学 放射科 计算机科学 哲学 语言学 程序设计语言
作者
Ori Preis,Michael A. Blake,James A. Scott
出处
期刊:Radiology [Radiological Society of North America]
卷期号:258 (3): 714-721 被引量:22
标识
DOI:10.1148/radiol.10100547
摘要

To assess the performance of an artificial neural network in the evaluation of fluorine 18 fluorodeoxyglucose (FDG) uptake in the liver, compared with the results of expert interpretation of abdominal liver magnetic resonance (MR) images.The study was approved by the institutional human research committee and was HIPAA compliant, with waiver of informed consent. Digital data from positron emission tomographic (PET)/computed tomographic (CT) examinations, along with patient demographics, were obtained from 98 consecutive patients who underwent both whole-body PET/CT examinations and liver MR imaging examinations within 2 months. Interpretations of the scans from PET/CT examinations by trained neural networks were cross-classified with expert interpretations of the findings on images from MR examinations for intrahepatic benignity or malignancy. Receiver operating characteristic (ROC) curves were obtained for the designed networks. The significance of the difference between neural network ROC curves and the ROC curves detailing the performance of two expert blinded observers in the interpretation of liver FDG uptake was determined.A neural network incorporating lesion data demonstrated an ROC curve with an area under the curve (AUC) of 0.905 (standard error, 0.0370). A network independent of lesion data demonstrated an ROC curve with an AUC of 0.896 (standard error, 0.0386). These results compare favorably with results of expert blinded observers 1 and 2 who demonstrated ROCs with AUCs of 0.786 (standard error, 0.0522) and 0.796 (standard error, 0.0514), respectively. Following unblinding to network data, the AUCs for readers 1 and 2 improved to 0.924 (standard error, 0.0335) and 0.881 (standard error, 0.0409), respectively.Computers running artificial neural networks employing PET/CT scan data are sensitive and specific in the designation of the presence of intrahepatic malignancy, with comparison with interpretation by expert observers. When used in conjunction with human expertise, network data improve accuracy of the human interpreter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的cc完成签到,获得积分10
刚刚
kiterunner发布了新的文献求助10
1秒前
wangYJ完成签到,获得积分10
3秒前
莹莹完成签到 ,获得积分10
3秒前
充电宝应助yuyuwei采纳,获得10
3秒前
lili发布了新的文献求助10
5秒前
牛马学生完成签到,获得积分10
5秒前
爆米花应助JM采纳,获得30
5秒前
年年完成签到,获得积分20
5秒前
哭泣绿旋完成签到,获得积分10
6秒前
Ava应助m李采纳,获得10
6秒前
6秒前
Lau完成签到,获得积分20
10秒前
tq完成签到,获得积分10
10秒前
一只羊完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
嘟嘟完成签到 ,获得积分10
11秒前
12秒前
Akim应助李昕123采纳,获得20
12秒前
地理汪汪发布了新的文献求助10
12秒前
13秒前
在水一方应助lili采纳,获得10
13秒前
诺坎普的晚风完成签到,获得积分20
13秒前
15秒前
浮游应助料峭声花采纳,获得10
15秒前
JamesPei应助明白放弃采纳,获得10
16秒前
16秒前
WWW完成签到 ,获得积分10
17秒前
酸酸给酸酸的求助进行了留言
18秒前
20秒前
20秒前
lijiauyi1994发布了新的文献求助10
21秒前
21秒前
lili完成签到,获得积分10
23秒前
Lucas应助vayne采纳,获得10
23秒前
有魅力的沧海完成签到 ,获得积分10
24秒前
科研通AI6应助地理汪汪采纳,获得10
24秒前
lll发布了新的文献求助20
25秒前
所所应助白三采纳,获得10
25秒前
xiaoyao完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439