High Rate and Stable Cycling of Lithium Metal Anode

法拉第效率 电解质 阳极 电化学 金属锂 锂(药物) 无机化学 二甲氧基乙烷 金属 剥离(纤维) 材料科学 电镀(地质) 化学 冶金 电极 复合材料 物理化学 内分泌学 医学 地球物理学 地质学
作者
Jiangfeng Qian,Wesley A. Henderson,Wu Xu,Priyanka Bhattacharya,Mark Engelhard,Oleg Borodin,Ji‐Guang Zhang
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (15): 1155-1155 被引量:11
标识
DOI:10.1149/ma2015-01/15/1155
摘要

Lithium (Li) metal is an ideal anode material for Li batteries due to its extremely high theoretical specific capacity (3860 mAh g -1 ), low density (0.59 g cm -3 ) and the lowest negative electrochemical potential (−3.040 V vs. standard hydrogen electrode). 1 However, dendritic Li growth and limited Coulombic efficiency (CE) during Li deposition/stripping have prevented their applications in rechargeable Li batteries, especially at high current densities. 2,3 Electrolyte is one of the most critical elements that affect the cycling stability of Li metal anode, since Li is thermodynamically unstable with any kinds of organic solvents and salts. 4 The interactions between organic electrolytes and Li metal results in significant side reactions that not only lead to low CE but also consume Li metal and/or electrolyte materials. This phenomena becomes especially serious at high current densities. 5 Therefore, extensive studies have been conducted to understand how electrolyte formulations affect the cycling of Li metal electrodes. Here, we demonstrate that the use of a highly concentrated electrolyte composed of 1,2-dimethoxyethane (DME) solvent and the salt lithium bis(fluorosulfonyl)imide (LiFSI) results in the nondendritic plating of Li metal at high rates and with high efficiency. The electrochemical performance of Li metal plating/stripping with a concentrated LiFSI-DME electrolyte is shown in Figure 1. Figure 1a gives the typical voltage profile of Li plating/stripping on Cu substrate using different current densities varying from 0.2 to 10 mA/cm 2 . A pair of well-defined charge/discharge plateaus can be distinguished for all the voltage curves with applied current densities up to 10 mA/cm 2 , and almost all the Li deposition capacity can be recovered during the stripping process as seen from the charge capacity. The voltage polarization at 0.2 mA/cm 2 is as low as 13 mV, and just slightly increases to 122 mV at 4 mA/cm 2 . Even when the current density increases to 10 mA/cm 2 , the voltage polarization is still only 270 mV. The average Coulombic efficiency of the cycling is > 99% (0.2, 0.5, and 1 mA/cm 2 ), 98% (4 mA/cm 2 ), 97% (8 mA/cm 2 ), 96.7% (10 mA/cm 2 ), respectively. Long term cycle tests as shown in Figure 1b indicate the Coulombic efficiency keeps stable without any decrease up to 400 cycles, manifesting an extraordinary cycling stability of Li metal in this electrolyte. These results provide a route for future efforts to optimize electrolytes for the safe and highly efficient utilization of Li metal electrodes for advanced energy storage applications. Detailed electrochemical characterization and study of the fundamental mechanisms behind the high rate Li cycling and stability of the electrolytes will be discussed in the presentation. Figure 1. Electrochemical performance of Li metal plating/stripping with a concentrated LiFSI-DME electrolyte: (a) Voltage profile of Li plating/stripping on Cu substrate using different current densities. (b) Coulombic efficiency of Cu|Li cells at different current densities. Acknowledgements This work was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the Basic Energy Sciences, Office of Science of the U.S. DOE. References W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, Energy Environ. Sci. , 7 , 513-537 (2014). D. Aurbach, E. zinigrad, Y. Cohen, and H. Teller, Solid state ionics , 148 , 405-416 (2002). F. Ding, W. Xu, X. Chen, J. Zhang, M. H. Engelhard, Y. Zhang, B. R. Johnson, J. V. Crum, T. A. Blake, X. Liu, J.-G. Zhang, J. Electrochem. Soc. 160, A1894-A1901 (2013). F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J.-G. Zhang, J. Am. Chem. Soc. , 135, 4450-4456 (2013). D. Lv, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu and J. Xiao, Adv. Energy Mater. , DOI: 10.1002/aenm.201400993 (2014). Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助危机的依柔采纳,获得10
刚刚
TK发布了新的文献求助10
刚刚
包容汉堡完成签到 ,获得积分10
刚刚
Owen应助俏皮果汁采纳,获得10
刚刚
笨笨芯发布了新的文献求助10
1秒前
tsttst完成签到,获得积分10
1秒前
桐桐应助王景采纳,获得10
1秒前
1秒前
絮语发布了新的文献求助20
1秒前
1秒前
2秒前
yinjq777发布了新的文献求助10
2秒前
完美世界应助iuv采纳,获得10
3秒前
3秒前
4秒前
xcydd发布了新的文献求助10
4秒前
5秒前
6秒前
alick发布了新的文献求助10
6秒前
7秒前
福福发布了新的文献求助10
8秒前
WO完成签到,获得积分20
9秒前
YANG发布了新的文献求助10
9秒前
9秒前
10秒前
jojokin发布了新的文献求助10
10秒前
zzr完成签到,获得积分20
10秒前
灵巧高山应助盖盖盖浇饭采纳,获得10
10秒前
太阳发布了新的文献求助10
11秒前
JamesPei应助xcydd采纳,获得30
12秒前
专通下水道完成签到 ,获得积分10
13秒前
大脑袋应助zddhhh采纳,获得10
13秒前
14秒前
科研通AI5应助温婉的书蕾采纳,获得10
14秒前
15秒前
张永明完成签到 ,获得积分10
15秒前
15秒前
Owen应助粗暴的问寒采纳,获得10
15秒前
隐形曼青应助太阳采纳,获得10
15秒前
梵蒂冈北海诚德完成签到,获得积分20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554588
求助须知:如何正确求助?哪些是违规求助? 3130412
关于积分的说明 9387005
捐赠科研通 2829789
什么是DOI,文献DOI怎么找? 1555716
邀请新用户注册赠送积分活动 726277
科研通“疑难数据库(出版商)”最低求助积分说明 715527