湍流
瑞利-贝纳德对流
努塞尔数
普朗特数
无量纲量
对流
机械
流量(数学)
瑞利数
物理
瑞利散射
传热
数学物理
自然对流
热力学
雷诺数
量子力学
作者
Erwin P. van der Poel,Richard J. A. M. Stevens,Detlef Lohse
标识
DOI:10.1103/physreve.84.045303
摘要
The aspect ratio ($\ensuremath{\Gamma}$) dependence of the heat transfer (Nusselt number Nu in dimensionless form) in turbulent (two-dimensional) Rayleigh-B\'enard convection is numerically studied in the regime $0.4\ensuremath{\leqslant}\ensuremath{\Gamma}\ensuremath{\leqslant}1.25$ for Rayleigh numbers ${10}^{7}\ensuremath{\leqslant}\text{Ra}\ensuremath{\leqslant}{\text{Ra}}^{9}$ and Prandtl numbers $\text{Pr}=0.7$ (gas) and $4.3$ (water). $\text{Nu}(\ensuremath{\Gamma})$ shows a very rich structure with sudden jumps and sharp transitions. We connect these structures to the way the flow organizes itself in the sample and explain why the aspect ratio dependence of Nu is more pronounced for small Pr. Even for fixed $\ensuremath{\Gamma}$ different turbulent states (with different resulting Nu) can exist, between which the flow can or cannot switch. In the latter case the heat transfer thus depends on the initial conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI