The Tetracycline Repressor—A Paradigm for a Biological Switch

泰特 抑制因子 四环素 核糖体结合位点 细胞生物学 茴香霉素 蛋白质生物合成 基因 生物物理学 信使核糖核酸 遗传学 生物 基因表达 翻译(生物学) 抗生素
作者
Wolfram Saenger,Peter Orth,Caroline Kisker,Wolfgang Hillen,Winfried Hinrichs
出处
期刊:Angewandte Chemie [Wiley]
卷期号:39 (12): 2042-2052 被引量:120
标识
DOI:10.1002/1521-3773(20000616)39:12<2042::aid-anie2042>3.0.co;2-c
摘要

The excessive use of antibiotics has enabled bacteria to develop resistance through a variety of mechanisms. The most common bacteriostatic action of the broad-spectrum antibiotic tetracycline (Tc) is by the inactivation of the bacterial ribosome so that the protein biosynthesis is interrupted and the bacteria die. The most common mechanism of resistance in gram-negative bacteria against Tc is associated with the membrane-intrinsic protein TetA, which exports invaded Tc out of the bacterial cell before it can attack its target, the ribosome. The expression of TetA is tightly regulated by the homodimeric Tet repressor (TetR)2, which binds specifically with two helix-turn-helix motifs of operator DNA (tetO; Kass≈1011 M−1) located upstream from the tetA gene on a plasmid or transposon. When Tc diffuses into the cell it chelates Mg2+ and the complex [MgTc]+ binds to (TetR)2 to form the induced complex (TetR⋅[MgTc]+)2. This process is associated with conformational changes, which sharply reduce the affinity of (TetR)2 to tetO, so that expression of TetA can take place, thus conferring resistance to the bacteria cells against Tc. Crystallographic studies show sequence-specific protein–nucleic acid interactions in the (TetR)2⋅tetO complex and how the binding of two [MgTc]+ to (TetR)2 enforces conformational changes that are stabilized by cooperative binding of two chains of eight water molecules each so that the formed (TetR⋅[MgTc]+)2 is no longer able to recognize and bind to tetO. Since the switching mechanisms of the TetR/[MgTc]+ system is so tight, it has proven very useful in the regulation of eukaryotic gene expression and may also be applicable in gene therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得30
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
dzbb应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
苹果应助科研通管家采纳,获得20
1秒前
今后应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
陈军应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
sean发布了新的文献求助30
1秒前
辰希完成签到,获得积分10
1秒前
lllydia完成签到,获得积分10
2秒前
Murphy完成签到,获得积分10
2秒前
ayu发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
吴一一发布了新的文献求助10
4秒前
zsy012完成签到,获得积分20
4秒前
xixi完成签到,获得积分10
4秒前
5秒前
6秒前
脑洞疼应助liuhui采纳,获得10
6秒前
77完成签到,获得积分20
6秒前
未来已来完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
7秒前
自由老头完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
瘦瘦以亦发布了新的文献求助10
9秒前
花眠发布了新的文献求助10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156402
求助须知:如何正确求助?哪些是违规求助? 2807851
关于积分的说明 7874906
捐赠科研通 2466107
什么是DOI,文献DOI怎么找? 1312627
科研通“疑难数据库(出版商)”最低求助积分说明 630194
版权声明 601912