Sample selection bias and Heckman models in strategic management research

选择偏差 内生性 样品(材料) 省略变量偏差 选择(遗传算法) 计量经济学 样本量测定 取样偏差 经济 统计 计算机科学 数学 色谱法 人工智能 化学
作者
S. Trevis Certo,John R. Busenbark,Hyun‐Soo Woo,Matthew Semadeni
出处
期刊:Strategic Management Journal [Wiley]
卷期号:37 (13): 2639-2657 被引量:656
标识
DOI:10.1002/smj.2475
摘要

Research summary: The use of Heckman models by strategy scholars to resolve sample selection bias has increased by more than 700 percent over the last decade, yet significant inconsistencies exist in how they have applied and interpreted these models. In view of these differences, we explore the drivers of sample selection bias and review how Heckman models alleviate it. We demonstrate three important findings for scholars seeking to use Heckman models: First, the independent variable of interest must be a significant predictor in the first stage of a model for sample selection bias to exist. Second, the significance of lambda alone does not indicate sample selection bias. Finally, Heckman models account for sample‐induced endogeneity, but are not effective when other sources of endogeneity are present . Managerial summary: When nonrandom samples are used to test statistical relationships, sample selection bias can lead researchers to flawed conclusions that can, in turn, negatively impact managerial decision‐making. We examine the use of Heckman models, which were designed to resolve sample selection bias, in strategic management research and highlight conditions when sample selection bias is present as well as when it is not. We also distinguish sample selection bias, a form of omitted variable ( OV ) bias, from more traditional OV bias, emphasizing that it is possible for models to have sample selection bias, traditional OV bias, or both. Accurately identifying the type(s) of OV bias present is essential to effectively correcting it. We close with several recommendations to improve practice surrounding the use of Heckman models . Copyright © 2015 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
学习使人头大完成签到,获得积分10
1秒前
共享精神应助顺利的钢笔采纳,获得10
1秒前
专注芹发布了新的文献求助10
4秒前
车宇完成签到 ,获得积分10
4秒前
兰w完成签到,获得积分20
5秒前
5秒前
细雨发布了新的文献求助10
6秒前
guo完成签到,获得积分0
8秒前
fanglin123发布了新的文献求助10
10秒前
所所应助悲凉的笑卉采纳,获得10
12秒前
刘小姐关注了科研通微信公众号
12秒前
NexusExplorer应助sunrise采纳,获得10
13秒前
桐桐应助单薄店员采纳,获得10
14秒前
乌龟发布了新的文献求助10
14秒前
小蘑菇应助兰w采纳,获得30
16秒前
爆米花应助i的问题采纳,获得10
16秒前
16秒前
专注芹完成签到,获得积分10
20秒前
研友_VZG7GZ应助可达燊采纳,获得10
20秒前
maoxinnan发布了新的文献求助10
20秒前
sirhai发布了新的文献求助10
21秒前
丘比特应助fanglin123采纳,获得10
22秒前
毛儿豆儿完成签到,获得积分10
23秒前
CL完成签到,获得积分10
27秒前
我是老大应助无误采纳,获得10
28秒前
29秒前
随性i完成签到,获得积分10
29秒前
sirhai完成签到,获得积分10
30秒前
HL完成签到,获得积分10
31秒前
hyman1218完成签到,获得积分10
31秒前
温暖寻雪发布了新的文献求助10
33秒前
33秒前
葫芦娃完成签到,获得积分20
33秒前
34秒前
hyman1218发布了新的文献求助20
35秒前
JiangnanYuan发布了新的文献求助10
35秒前
乐乐应助Salt采纳,获得10
35秒前
华W发布了新的文献求助10
36秒前
无误发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999076
求助须知:如何正确求助?哪些是违规求助? 3538508
关于积分的说明 11274412
捐赠科研通 3277402
什么是DOI,文献DOI怎么找? 1807554
邀请新用户注册赠送积分活动 883917
科研通“疑难数据库(出版商)”最低求助积分说明 810080