已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sample selection bias and Heckman models in strategic management research

选择偏差 内生性 样品(材料) 省略变量偏差 选择(遗传算法) 计量经济学 样本量测定 取样偏差 经济 统计 计算机科学 数学 色谱法 人工智能 化学
作者
S. Trevis Certo,John R. Busenbark,Hyun‐Soo Woo,Matthew Semadeni
出处
期刊:Strategic Management Journal [Wiley]
卷期号:37 (13): 2639-2657 被引量:635
标识
DOI:10.1002/smj.2475
摘要

Research summary: The use of Heckman models by strategy scholars to resolve sample selection bias has increased by more than 700 percent over the last decade, yet significant inconsistencies exist in how they have applied and interpreted these models. In view of these differences, we explore the drivers of sample selection bias and review how Heckman models alleviate it. We demonstrate three important findings for scholars seeking to use Heckman models: First, the independent variable of interest must be a significant predictor in the first stage of a model for sample selection bias to exist. Second, the significance of lambda alone does not indicate sample selection bias. Finally, Heckman models account for sample‐induced endogeneity, but are not effective when other sources of endogeneity are present . Managerial summary: When nonrandom samples are used to test statistical relationships, sample selection bias can lead researchers to flawed conclusions that can, in turn, negatively impact managerial decision‐making. We examine the use of Heckman models, which were designed to resolve sample selection bias, in strategic management research and highlight conditions when sample selection bias is present as well as when it is not. We also distinguish sample selection bias, a form of omitted variable ( OV ) bias, from more traditional OV bias, emphasizing that it is possible for models to have sample selection bias, traditional OV bias, or both. Accurately identifying the type(s) of OV bias present is essential to effectively correcting it. We close with several recommendations to improve practice surrounding the use of Heckman models . Copyright © 2015 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
带头大哥应助科研通管家采纳,获得100
3秒前
4秒前
hb完成签到,获得积分10
4秒前
lms0214完成签到,获得积分10
4秒前
科研通AI2S应助libobobo采纳,获得10
4秒前
科研通AI2S应助libobobo采纳,获得10
4秒前
科研通AI2S应助libobobo采纳,获得10
4秒前
5秒前
Zehn发布了新的文献求助30
6秒前
Ava应助飘逸的山柏采纳,获得10
6秒前
Jacky发布了新的文献求助10
10秒前
小mang子完成签到,获得积分10
10秒前
Hello应助爱吃百香果采纳,获得10
12秒前
13秒前
Zehn完成签到,获得积分20
14秒前
turbohuan发布了新的文献求助10
16秒前
魔幻熊猫发布了新的文献求助10
16秒前
BGRC131031发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
20秒前
20秒前
fanjinke完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
emmm发布了新的文献求助10
23秒前
脑洞疼应助Dx采纳,获得10
23秒前
Orange应助魔幻熊猫采纳,获得10
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133652
求助须知:如何正确求助?哪些是违规求助? 2784626
关于积分的说明 7767874
捐赠科研通 2439828
什么是DOI,文献DOI怎么找? 1297069
科研通“疑难数据库(出版商)”最低求助积分说明 624840
版权声明 600791