Identification of elastic–plastic anisotropic parameters using instrumented indentation and inverse analysis

材料科学 各向异性 缩进 各向同性 横截面 横观各向同性 复合材料 流离失所(心理学) 涂层 反向 结构工程 几何学 光学 数学 物理 工程类 心理学 心理治疗师
作者
Toshio Nakamura,Yu Gu
出处
期刊:Mechanics of Materials [Elsevier]
卷期号:39 (4): 340-356 被引量:109
标识
DOI:10.1016/j.mechmat.2006.06.004
摘要

Mechanical responses of thin films or coatings often display anisotropic behaviors because of their unique microstructures. However, their small size scales can also make determination of material properties difficult. The present paper introduces a simple yet versatile procedure with advanced data interpretation scheme to identify key anisotropic parameters. This procedure utilizes instrumented indentations and an inverse analysis to extract unknown parameters of elastic–plastic transversely isotropic materials. In particular, it post-processes load–displacement records of depth-sensing indentations to obtain best estimates of Young’s moduli and yield stresses along longitudinal and transverse directions, respectively. Major advantages of this method are the minimal specimen preparations and the straightforward testing procedure. To enhance the accuracy, the method utilizes two differently profiled indenter heads, spherical and Berkovich. Prior to actual testing, detailed simulations were performed to verify the method’s applicability and robustness. In the experiment, a thermally sprayed NiAl coating which possesses process-induced anisotropic features is considered. The load–displacement records of spherical and Berkovich nano-indentations are post-processed with the proposed inverse analysis scheme. The estimated results predict dissimilar responses along the longitudinal and transverse directions. Separate tests are also conducted with micro-indenter heads under larger loads. They demonstrate lesser anisotropic effects but with more compliant responses. These results are attributed to the unique morphology of thermally sprayed coatings, which inherently exhibit size and anisotropic effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郜易完成签到,获得积分20
2秒前
Famiglistmo完成签到,获得积分10
3秒前
ff应助末晶采纳,获得10
4秒前
包容丹云发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
rortis应助小鱼采纳,获得10
12秒前
夜斗完成签到,获得积分10
14秒前
15秒前
脑洞疼应助uwasa采纳,获得10
16秒前
奋斗映寒发布了新的文献求助10
17秒前
坚韧的咯咯完成签到,获得积分20
18秒前
领导范儿应助yin采纳,获得10
18秒前
小学生的练习簿完成签到,获得积分10
19秒前
22秒前
23秒前
25秒前
大模型应助judy采纳,获得10
26秒前
上岸的元气少女完成签到,获得积分20
27秒前
哈哈完成签到 ,获得积分10
27秒前
龙超人发布了新的文献求助10
29秒前
zhoujunjie发布了新的文献求助20
29秒前
小王同学完成签到,获得积分10
30秒前
sissiarno应助消潇采纳,获得30
32秒前
小王同学发布了新的文献求助10
32秒前
35秒前
37秒前
xiaohei完成签到,获得积分10
38秒前
GGBOND完成签到,获得积分10
38秒前
险胜应助科研通管家采纳,获得10
39秒前
星辰大海应助科研通管家采纳,获得10
39秒前
Ava应助科研通管家采纳,获得10
39秒前
huo应助科研通管家采纳,获得10
39秒前
上官若男应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得20
39秒前
Termin完成签到,获得积分20
40秒前
41秒前
思源应助高大的河马采纳,获得10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469