Critique of the Two-Fold Measure of Prediction Success for Ratios: Application for the Assessment of Drug-Drug Interactions

度量(数据仓库) 统计 药品 计算机科学 计量经济学 数学 数据挖掘 医学 药理学
作者
Eleanor J. Guest,Leon Aarons,J. Brian Houston,Amin Rostami‐Hodjegan,Aleksandra Galetin
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:39 (2): 170-173 被引量:166
标识
DOI:10.1124/dmd.110.036103
摘要

Current assessment of drug-drug interaction (DDI) prediction success is based on whether predictions fall within a two-fold range of the observed data. This strategy results in a potential bias toward successful prediction at lower interaction levels [ratio of the area under the concentration-time profile (AUC) in the presence of inhibitor/inducer compared with control is <2]. This scenario can bias any assessment of different DDI prediction algorithms if databases contain large proportion of interactions in this lower range. Therefore, the current study proposes an alternative method to assess prediction success with a variable prediction margin dependent on the particular AUC ratio. The method is applicable for assessment of both induction and inhibition-related algorithms. The inclusion of variability into this predictive measure is also considered using midazolam as a case study. Comparison of the traditional two-fold and the new predictive method was performed on a subset of midazolam DDIs collated from previous databases; in each case, DDIs were predicted using the dynamic model in Simcyp simulator. A 21% reduction in prediction accuracy was evident using the new predictive measure, in particular at the level of no/weak interaction (AUC ratio <2). However, inclusion of variability increased the prediction success at these levels by two-fold. The trend of lower prediction accuracy at higher potency of DDIs reported in previous studies is no longer apparent when predictions are assessed via the new predictive measure. Thus, the study proposes a more logical method for the assessment of prediction success and its application for induction and inhibition DDIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谜记发布了新的文献求助10
1秒前
hyd1640完成签到,获得积分10
2秒前
大个应助yyshhcyuwhegy采纳,获得10
2秒前
魏邪欢发布了新的文献求助10
2秒前
3秒前
3秒前
Rofger完成签到 ,获得积分10
3秒前
搭碰完成签到,获得积分0
4秒前
5秒前
研友_ng9Yj8完成签到,获得积分20
5秒前
vanilla发布了新的文献求助10
6秒前
6秒前
星辰大海应助幸福的勒采纳,获得10
6秒前
6秒前
米粒完成签到,获得积分10
7秒前
高高的逍遥完成签到,获得积分20
7秒前
7秒前
7秒前
xiaoxiao发布了新的文献求助10
7秒前
8秒前
Lili关注了科研通微信公众号
9秒前
张瑞青完成签到 ,获得积分10
9秒前
承宣发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
酷波er应助影子采纳,获得10
10秒前
可爱的函函应助lll采纳,获得10
10秒前
小酒迟疑发布了新的文献求助10
10秒前
fjljylm完成签到,获得积分10
10秒前
彩虹糖完成签到 ,获得积分10
11秒前
梦蝴蝶完成签到,获得积分10
11秒前
研友_ng9Yj8发布了新的文献求助10
11秒前
11秒前
学呀学发布了新的文献求助10
11秒前
Phi.Wang发布了新的文献求助10
13秒前
13秒前
小杰发布了新的文献求助10
13秒前
美丽的冷风完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
丘比特应助天外来客采纳,获得10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665569
求助须知:如何正确求助?哪些是违规求助? 3224872
关于积分的说明 9760129
捐赠科研通 2934794
什么是DOI,文献DOI怎么找? 1607205
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101