Recognition of high frequency words from speech as a predictor of L2 listening comprehension

积极倾听 听写 词汇 理解力 心理学 按频率列出的单词列表 单词识别 语言学 计算机科学 语音识别 自然语言处理 阅读(过程) 沟通 哲学 判决
作者
Joshua Matthews,Junyu Cheng
出处
期刊:System [Elsevier]
卷期号:52: 1-13 被引量:109
标识
DOI:10.1016/j.system.2015.04.015
摘要

This paper investigates the relationship between recognition of high frequency words from speech and second language (L2) listening comprehension among 167 tertiary level Chinese learners of English. It also interrogates the extent to which the ability to recognise words from speech contributes to the prediction of L2 listening comprehension scores. Word recognition from speech (WRS) was assessed with a partial dictation test which targeted high frequency vocabulary. These target words were categorised as belonging to either the first, second or third thousand word frequency levels through comparison with the British National Corpus and the Corpus of Contemporary American English (BNC/COCA) word family lists. L2 listening comprehension was assessed with a version of the International English Language Testing System (IELTS). Multiple regression analysis revealed that recognition of words from the third thousand frequency level alone could predict 52% of the variance observed in the listening comprehension scores. Recognition scores for words below the third thousand frequency range added very little unique predictive power to the regression model. This was the case despite word recognition scores for the first, second and third thousand frequency ranges strongly correlating with listening comprehension scores. Findings suggest the ability to recognise high frequency words from speech is predictive of the aural modality specific word knowledge indicative of successful L2 listening comprehension. Pedagogical implications and applications are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研完成签到,获得积分10
1秒前
科研通AI2S应助飞快的尔蓝采纳,获得10
1秒前
斯文败类应助飞快的尔蓝采纳,获得10
1秒前
2秒前
一一应助稳重的蛟凤采纳,获得20
2秒前
xiaole完成签到,获得积分10
3秒前
6666666666发布了新的文献求助20
3秒前
3秒前
DWDD发布了新的文献求助10
3秒前
成龙王发布了新的文献求助10
4秒前
BowieHuang应助颖颖采纳,获得10
4秒前
科研通AI6.1应助jingle采纳,获得10
4秒前
4秒前
5秒前
sswbzh给好运偏爱的那个男的的求助进行了留言
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
坚定的雁完成签到 ,获得积分10
7秒前
7秒前
Sun1c7发布了新的文献求助10
7秒前
8秒前
8秒前
邢丹丹发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
勤恳的鹰发布了新的文献求助10
11秒前
小丸子发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
不安乐曲发布了新的文献求助10
12秒前
BowieHuang应助啵啵采纳,获得10
12秒前
13秒前
CodeCraft应助千里采纳,获得10
13秒前
13秒前
wangxuejiao发布了新的文献求助10
13秒前
孔雀东南风完成签到,获得积分10
14秒前
Intro发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933