Recognition of high frequency words from speech as a predictor of L2 listening comprehension

积极倾听 听写 词汇 理解力 心理学 按频率列出的单词列表 单词识别 语言学 计算机科学 语音识别 自然语言处理 阅读(过程) 沟通 判决 哲学
作者
Joshua Matthews,Junyu Cheng
出处
期刊:System [Elsevier]
卷期号:52: 1-13 被引量:109
标识
DOI:10.1016/j.system.2015.04.015
摘要

This paper investigates the relationship between recognition of high frequency words from speech and second language (L2) listening comprehension among 167 tertiary level Chinese learners of English. It also interrogates the extent to which the ability to recognise words from speech contributes to the prediction of L2 listening comprehension scores. Word recognition from speech (WRS) was assessed with a partial dictation test which targeted high frequency vocabulary. These target words were categorised as belonging to either the first, second or third thousand word frequency levels through comparison with the British National Corpus and the Corpus of Contemporary American English (BNC/COCA) word family lists. L2 listening comprehension was assessed with a version of the International English Language Testing System (IELTS). Multiple regression analysis revealed that recognition of words from the third thousand frequency level alone could predict 52% of the variance observed in the listening comprehension scores. Recognition scores for words below the third thousand frequency range added very little unique predictive power to the regression model. This was the case despite word recognition scores for the first, second and third thousand frequency ranges strongly correlating with listening comprehension scores. Findings suggest the ability to recognise high frequency words from speech is predictive of the aural modality specific word knowledge indicative of successful L2 listening comprehension. Pedagogical implications and applications are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
苏鱼完成签到 ,获得积分10
1秒前
恋空完成签到 ,获得积分10
1秒前
曲终人散完成签到,获得积分10
2秒前
wu发布了新的文献求助10
2秒前
wintercyan完成签到,获得积分10
2秒前
4秒前
4秒前
妮儿发布了新的文献求助10
4秒前
4秒前
MADKAI发布了新的文献求助10
5秒前
insane完成签到,获得积分10
5秒前
云儿发布了新的文献求助20
5秒前
Jasper应助哲999采纳,获得10
5秒前
wanci应助拟拟采纳,获得10
6秒前
王超超完成签到,获得积分10
6秒前
6秒前
圈圈发布了新的文献求助10
7秒前
狼来了aas完成签到,获得积分10
7秒前
7秒前
大胆的莛发布了新的文献求助10
8秒前
文静的信封完成签到,获得积分10
8秒前
CipherSage应助wu采纳,获得10
8秒前
科目三应助震666采纳,获得30
8秒前
April发布了新的文献求助10
9秒前
加菲丰丰应助猫橘汽水采纳,获得30
9秒前
阳光海云完成签到,获得积分10
9秒前
10秒前
攒一口袋星星完成签到,获得积分10
10秒前
alwry完成签到,获得积分10
10秒前
eyebrow完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
小胖鱼完成签到,获得积分20
11秒前
Grayball应助啊这啥啊这是采纳,获得10
12秒前
cf完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740