Hierarchical off-diagonal low-rank approximation of Hessians in inverse problems, with application to ice sheet model initialization

数学 初始化 对角线的 秩(图论) 反向 应用数学 可逆矩阵 反问题 牙石(牙科) 数学分析 几何学 纯数学 组合数学 计算机科学 口腔正畸科 医学 程序设计语言
作者
Tucker Hartland,Georg Stadler,Mauro Perego,Kim Liegeois,Noémi Petra
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:39 (8): 085006-085006 被引量:3
标识
DOI:10.1088/1361-6420/acd719
摘要

Obtaining lightweight and accurate approximations of Hessian applies in inverse problems governed by partial differential equations (PDEs) is an essential task to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The $\mathcal{O}(N^{3})$ computational complexity of dense linear algebraic routines such as that needed for sampling from Gaussian proposal distributions and Newton solves by direct linear methods, can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR approximation by efficiently generating Hessian approximations that allow fast generation of samples from a Gaussianized posterior proposal distribution. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss-Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global low-rank approximations, for large-scale problems by studying the data-misfit Hessian associated to inverse problems governed by the Stokes flow model on the Humboldt glacier and Greenland ice sheets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongyinanke发布了新的文献求助50
1秒前
lele发布了新的文献求助10
1秒前
华仔应助小巧寻桃采纳,获得10
1秒前
hhh完成签到,获得积分10
2秒前
南极以南完成签到,获得积分10
2秒前
酷炫的幻丝完成签到 ,获得积分10
4秒前
5秒前
zxh发布了新的文献求助10
9秒前
9秒前
受伤的无心完成签到 ,获得积分10
10秒前
平淡从霜发布了新的文献求助10
10秒前
14秒前
zxh完成签到,获得积分10
17秒前
17秒前
1111111发布了新的文献求助10
19秒前
淘气乌龙茶完成签到 ,获得积分10
19秒前
SciGPT应助危机的阁采纳,获得10
21秒前
生动的若之完成签到 ,获得积分10
21秒前
冷酷莫言发布了新的文献求助10
23秒前
25秒前
lucky完成签到 ,获得积分10
26秒前
26秒前
27秒前
zhongyinanke完成签到 ,获得积分10
28秒前
666发布了新的文献求助10
30秒前
李先生完成签到 ,获得积分10
33秒前
古藤完成签到 ,获得积分10
34秒前
风中的碧玉完成签到,获得积分10
35秒前
nini完成签到 ,获得积分10
36秒前
506407完成签到,获得积分10
37秒前
蓝天发布了新的文献求助10
38秒前
科研通AI6应助加油采纳,获得10
39秒前
kroll发布了新的文献求助10
39秒前
LL完成签到 ,获得积分10
40秒前
41秒前
41秒前
Carolina完成签到,获得积分10
42秒前
繁荣的立果完成签到,获得积分10
47秒前
危机的阁发布了新的文献求助10
48秒前
晓汁完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055