Hierarchical off-diagonal low-rank approximation of Hessians in inverse problems, with application to ice sheet model initialization

数学 初始化 对角线的 秩(图论) 反向 应用数学 可逆矩阵 反问题 牙石(牙科) 数学分析 几何学 纯数学 组合数学 计算机科学 口腔正畸科 医学 程序设计语言
作者
Tucker Hartland,Georg Stadler,Mauro Perego,Kim Liegeois,Noémi Petra
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:39 (8): 085006-085006 被引量:3
标识
DOI:10.1088/1361-6420/acd719
摘要

Obtaining lightweight and accurate approximations of Hessian applies in inverse problems governed by partial differential equations (PDEs) is an essential task to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The $\mathcal{O}(N^{3})$ computational complexity of dense linear algebraic routines such as that needed for sampling from Gaussian proposal distributions and Newton solves by direct linear methods, can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR approximation by efficiently generating Hessian approximations that allow fast generation of samples from a Gaussianized posterior proposal distribution. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss-Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global low-rank approximations, for large-scale problems by studying the data-misfit Hessian associated to inverse problems governed by the Stokes flow model on the Humboldt glacier and Greenland ice sheets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
求助人员应助unt02采纳,获得10
刚刚
打打应助KinaC02采纳,获得10
1秒前
echo发布了新的文献求助10
1秒前
叫锅盔的猫完成签到 ,获得积分10
1秒前
AY完成签到,获得积分10
1秒前
1秒前
果果发布了新的文献求助10
1秒前
12111发布了新的文献求助10
2秒前
eden完成签到 ,获得积分20
3秒前
3秒前
www发布了新的文献求助10
3秒前
3秒前
李健应助dadada采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
CodeCraft应助橙子采纳,获得10
5秒前
Lil_baby完成签到,获得积分20
5秒前
无花果应助smin采纳,获得10
5秒前
嘿嘿发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
肖航子完成签到,获得积分10
6秒前
zbylaosiji发布了新的文献求助30
6秒前
内向凌波完成签到 ,获得积分10
7秒前
小柚子的傻二哥应助西扬采纳,获得20
7秒前
北瑾发布了新的文献求助10
7秒前
whg发布了新的文献求助10
7秒前
7秒前
Lil_baby发布了新的文献求助10
8秒前
Yaxin发布了新的文献求助10
8秒前
梅竹发布了新的文献求助10
8秒前
斯文败类应助www采纳,获得10
8秒前
11111完成签到,获得积分10
9秒前
论英雄发布了新的文献求助10
9秒前
echo完成签到,获得积分20
9秒前
完美世界应助荣荣采纳,获得10
10秒前
英俊的铭应助个性的斑马采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786