PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr4+: Multivalent peptide enhancing target capture efficiency and antifouling performance

微泡 生物污染 外体 化学 检出限 组合化学 生物物理学 色谱法 生物化学 生物 小RNA 基因
作者
Junjie Hu,Zhihui Mao,Yongkai Lu,Qiang Chen,Junjie Xia,Hui Deng,Hongxia Chen
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:235: 115379-115379 被引量:18
标识
DOI:10.1016/j.bios.2023.115379
摘要

Programmed death ligand 1 (PD-L1) exosomes are important biomarkers of immune activation in the initial stages of treatment and can predict clinical responses to PD-1 blockade in various cancer patients. However, traditional PD-L1 exosome bioassays face challenges such as high interface fouling in complex detection environments, limited detection specificity, and poor clinical serum applicability. Inspired by the multi-branched structure of trees, a biomimetic tree-like multifunctional antifouling peptide (TMAP)-assisted electrochemical sensor was developed for high-sensitivity exosomes detection. Multivalent interaction of TMAP significantly enhances the binding affinity of PD-L1 exosomes, thanks to the designed branch antifouling sequence, TMAPs antifouling performance is further improved. The addition of Zr4+ forms coordination bonds with the exosome's lipid bilayer phosphate groups to achieve highly selective and stable binding without interference from protein activity. The specific coordination between AgNCs and Zr4+ contributes to a dramatic change in the electrochemical signals, and lowing detection limit. The designed electrochemical sensor exhibited excellent selectivity and a wide dynamic response within the PD-L1 exosome concentration range from 78 to 7.8 × 107 particles/mL. Overall, the multivalent binding ability of TMAP and the signal amplification characteristics of AgNCs have a certain driving role in achieving clinical detection of exosomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
直率起眸完成签到,获得积分10
1秒前
1秒前
京昭发布了新的文献求助10
1秒前
1秒前
Lv发布了新的文献求助10
1秒前
阿容完成签到,获得积分10
1秒前
木炭完成签到,获得积分10
1秒前
搜集达人应助badada采纳,获得10
2秒前
顾矜应助zdd采纳,获得10
2秒前
3秒前
林夏应助伯赏盼晴采纳,获得10
3秒前
Hugsy完成签到,获得积分10
4秒前
4秒前
沐沐完成签到,获得积分20
5秒前
zhaoyg发布了新的文献求助10
5秒前
Naomi发布了新的文献求助10
6秒前
6秒前
Bovr完成签到,获得积分20
6秒前
6秒前
6秒前
星辰大海应助友好代亦采纳,获得10
7秒前
7秒前
李健的小迷弟应助Zzziihao采纳,获得10
7秒前
7秒前
深情安青应助Alex采纳,获得10
8秒前
8秒前
8秒前
大胆以蕊完成签到,获得积分10
8秒前
田様应助young406采纳,获得10
9秒前
9秒前
Kkkkkk完成签到,获得积分10
9秒前
10秒前
absorb发布了新的文献求助10
10秒前
lingling发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
湛湛发布了新的文献求助10
11秒前
lll完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791