PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr4+: Multivalent peptide enhancing target capture efficiency and antifouling performance

微泡 生物污染 外体 化学 检出限 组合化学 生物物理学 色谱法 生物化学 生物 小RNA 基因
作者
Junjie Hu,Zhihui Mao,Yongkai Lu,Qiang Chen,Junjie Xia,Hui Deng,Hongxia Chen
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:235: 115379-115379 被引量:15
标识
DOI:10.1016/j.bios.2023.115379
摘要

Programmed death ligand 1 (PD-L1) exosomes are important biomarkers of immune activation in the initial stages of treatment and can predict clinical responses to PD-1 blockade in various cancer patients. However, traditional PD-L1 exosome bioassays face challenges such as high interface fouling in complex detection environments, limited detection specificity, and poor clinical serum applicability. Inspired by the multi-branched structure of trees, a biomimetic tree-like multifunctional antifouling peptide (TMAP)-assisted electrochemical sensor was developed for high-sensitivity exosomes detection. Multivalent interaction of TMAP significantly enhances the binding affinity of PD-L1 exosomes, thanks to the designed branch antifouling sequence, TMAPs antifouling performance is further improved. The addition of Zr4+ forms coordination bonds with the exosome's lipid bilayer phosphate groups to achieve highly selective and stable binding without interference from protein activity. The specific coordination between AgNCs and Zr4+ contributes to a dramatic change in the electrochemical signals, and lowing detection limit. The designed electrochemical sensor exhibited excellent selectivity and a wide dynamic response within the PD-L1 exosome concentration range from 78 to 7.8 × 107 particles/mL. Overall, the multivalent binding ability of TMAP and the signal amplification characteristics of AgNCs have a certain driving role in achieving clinical detection of exosomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助YaHe采纳,获得10
刚刚
xsh发布了新的文献求助10
1秒前
2秒前
3秒前
Shawnchan完成签到,获得积分10
3秒前
欢喜的未来完成签到,获得积分10
3秒前
研友_VZG7GZ应助chloe采纳,获得10
4秒前
标致溪流发布了新的文献求助10
6秒前
水晶茶杯发布了新的文献求助10
6秒前
shidewu发布了新的文献求助10
9秒前
辣味锅包肉完成签到,获得积分10
9秒前
大模型应助吴未采纳,获得10
10秒前
cc完成签到 ,获得积分10
12秒前
13秒前
14秒前
喵喵完成签到,获得积分10
14秒前
Drwenlu完成签到,获得积分10
14秒前
xiaodudu完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
YaHe发布了新的文献求助10
17秒前
所所应助你好采纳,获得10
19秒前
静香发布了新的文献求助10
19秒前
shidewu完成签到,获得积分10
20秒前
20秒前
21秒前
泽佳发布了新的文献求助10
21秒前
我不困发布了新的文献求助10
21秒前
韩星发布了新的文献求助10
21秒前
狗妹那塞完成签到,获得积分10
22秒前
23秒前
23秒前
25秒前
汉堡包应助煜琪采纳,获得10
25秒前
8R60d8应助Francis采纳,获得10
25秒前
小王发布了新的文献求助10
27秒前
安于此生完成签到 ,获得积分10
28秒前
Genmii完成签到,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738