Supervised learning of high-confidence phenotypic subpopulations from single-cell data

表型 计算生物学 特征选择 降维 计算机科学 可扩展性 范畴变量 生物 机器学习 人工智能 基因 遗传学 数据库
作者
Tao Ren,Canping Chen,Alexey V. Danilov,Susan Liu,Xiangnan Guan,Shunyi Du,Xiwei Wu,Mara H. Sherman,Paul T. Spellman,Lisa M. Coussens,Andrew Adey,Gordon B. Mills,Ling‐Yun Wu,Zheng Xia
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (5): 528-541 被引量:4
标识
DOI:10.1038/s42256-023-00656-y
摘要

Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here by deploying a Learning with Rejection strategy, we developed a novel supervised learning framework called PENCIL to identify subpopulations associated with categorical or continuous phenotypes from single-cell data. By embedding a feature selection function into this flexible framework, for the first time, we were able to simultaneously select informative features and identify cell subpopulations, enabling accurate identification of phenotypic subpopulations otherwise missed by methods incapable of concurrent gene selection. Furthermore, the regression mode of PENCIL presents a novel ability for supervised phenotypic trajectory learning of subpopulations from single-cell data. We conducted comprehensive simulations to evaluate PENCIL's versatility in simultaneous gene selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast and scalable to analyse one million cells within 1 h. Using the classification mode, PENCIL detected T-cell subpopulations associated with melanoma immunotherapy outcomes. Moreover, when applied to single-cell RNA sequencing of a patient with mantle cell lymphoma with drug treatment across multiple timepoints, the regression mode of PENCIL revealed a transcriptional treatment response trajectory. Collectively, our work introduces a scalable and flexible infrastructure to accurately identify phenotype-associated subpopulations from single-cell data. To detect phenotype-related cell subpopulations from single-cell data, appropriate feature sets need to be chosen or learned simultaneously. Ren et al. present here a tool based on Learning with Rejection, a method that during training learns features from cells that can be predicted with high confidence, while cells that the model is not yet certain about are rejected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
000发布了新的文献求助10
刚刚
噔噔噔噔完成签到,获得积分10
1秒前
2秒前
刘怀蕊发布了新的文献求助10
3秒前
舒心赛凤发布了新的文献求助10
3秒前
文艺明杰完成签到,获得积分10
3秒前
4秒前
4秒前
wawuuuuu完成签到,获得积分10
4秒前
Akim应助谢家宝树采纳,获得10
4秒前
LU发布了新的文献求助10
4秒前
5秒前
pinging完成签到,获得积分10
5秒前
通~发布了新的文献求助10
6秒前
lai完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
隐形曼青应助彭彭采纳,获得10
8秒前
卡卡完成签到 ,获得积分10
8秒前
科目三应助季夏采纳,获得10
9秒前
9秒前
今后应助激动的一手采纳,获得10
9秒前
许中原完成签到,获得积分10
9秒前
无限的幻灵完成签到,获得积分10
9秒前
10秒前
整齐路灯完成签到,获得积分10
10秒前
紧张的梦岚应助跳跃乘风采纳,获得20
10秒前
简单水杯完成签到 ,获得积分10
10秒前
大胆的尔岚完成签到,获得积分10
11秒前
11秒前
Sene完成签到,获得积分10
11秒前
哈哈大笑发布了新的文献求助10
11秒前
叶飞荷发布了新的文献求助10
12秒前
12秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
12秒前
12秒前
123456完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762