Diffusion models in medical imaging: A comprehensive survey

计算机科学 人工智能 扩散图 概率逻辑 噪音(视频) 降噪 机器学习 扩散 医学影像学 数据科学 图像(数学) 非线性降维 降维 热力学 物理
作者
Amirhossein Kazerouni,Ehsan Khodapanah Aghdam,Moein Heidari,Reza Azad,Mohsen Fayyaz,Ilker Hacihaliloglu,Dorit Merhof
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102846-102846 被引量:280
标识
DOI:10.1016/j.media.2023.102846
摘要

Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples in spite of their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. With the aim of helping the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical imaging. Specifically, we start with an introduction to the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modeling frameworks, namely, diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain, including image-to-image translation, reconstruction, registration, classification, segmentation, denoising, 2/3D generation, anomaly detection, and other medically-related challenges. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at our GitHub.1 We aim to update the relevant latest papers within it regularly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dream发布了新的文献求助30
1秒前
feiying88发布了新的文献求助10
2秒前
3秒前
wert完成签到,获得积分10
4秒前
赘婿应助路口采纳,获得10
4秒前
5秒前
星辰大海应助自信的紫青采纳,获得10
5秒前
6秒前
8秒前
8秒前
无算浮白发布了新的文献求助10
10秒前
晖晖shining完成签到 ,获得积分10
10秒前
gszyxyrxj发布了新的文献求助10
10秒前
安然完成签到,获得积分10
11秒前
两酒窝发布了新的文献求助10
11秒前
11秒前
生动路人应助January采纳,获得10
12秒前
ssss完成签到,获得积分10
12秒前
feiying88完成签到,获得积分10
12秒前
12秒前
13秒前
陶醉访风发布了新的文献求助30
13秒前
110o发布了新的文献求助10
13秒前
zhao发布了新的文献求助10
14秒前
15秒前
大笨蛋发布了新的文献求助10
15秒前
15秒前
桐桐应助1111采纳,获得10
15秒前
15秒前
999999发布了新的文献求助10
16秒前
甜滋滋发布了新的文献求助10
16秒前
17秒前
zihanwang应助旋转鸡爪子采纳,获得10
17秒前
彪行天下发布了新的文献求助10
19秒前
20秒前
20秒前
忐忑的小玉完成签到,获得积分10
21秒前
adam发布了新的文献求助30
21秒前
小薏米发布了新的文献求助10
21秒前
赘婿应助艾科研采纳,获得30
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070