Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring

人工智能 模式识别(心理学) 过程(计算) 特征(语言学) 计算机科学 超参数 融合 支持向量机 人工神经网络 高斯过程 高斯分布 语言学 操作系统 哲学 物理 量子力学
作者
Qisheng Wang,Xin Lin,Xianyin Duan,Ruqiang Yan,J.Y.H. Fuh,Kunpeng Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110440-110440 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110440
摘要

Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) process with great potential in producing high performance metal components. Due to lack of stability and repeatability of the building process, its wide application in industry is limited. The process monitoring and control are import to ensure product quality. The size and shape of the melt pool are continuously changing during the L-PBF process, which may lead to the generation of defects. To represent the melt pool variations more accurately, a new motion feature is extracted and a classification model is constructed to identify the melting state. Firstly, a 36-dimensional motion feature is obtained by contour unwrapping with respect to the melt pool centroid. Subsequently, a sample dataset of melt pool image including four categories of melting states is established. Finally, a Gaussian process classification (GPC) model is constructed to identify the melting state based on motion feature. To verify the performance of GPC, it is also given that the recognition results based on support vector machine (SVM) model, multilayer perceptron (MLP) and long short-term memory (LSTM) neural network. The research results show that under the advantages of automatically optimizing hyperparameters and providing probability distribution information of melting state, the GPC model can still achieve a better recognition result. The overall recognition rate reaches 87.1%, and the melting state can be better identified. A novel in-situ monitoring idea is provided for the L-PBF in this research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助wwww采纳,获得10
刚刚
wanci应助lihua采纳,获得10
刚刚
Yu应助LLL采纳,获得10
刚刚
吉吉完成签到,获得积分10
刚刚
刚刚
白敬亭小朋友完成签到,获得积分10
1秒前
糖果完成签到 ,获得积分10
1秒前
11完成签到 ,获得积分10
1秒前
杨帆完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
无花果应助Epiphany采纳,获得10
2秒前
刘旭环完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
酷波er应助程小明采纳,获得10
3秒前
东郭以云发布了新的文献求助10
3秒前
田様应助wujiwuhui采纳,获得10
4秒前
小晓俊发布了新的文献求助10
4秒前
研友_VZG7GZ应助yyt采纳,获得10
5秒前
栗子发布了新的文献求助10
5秒前
李大橘完成签到,获得积分10
5秒前
正直芒果发布了新的文献求助10
5秒前
科研通AI6应助芒go采纳,获得10
5秒前
chens627发布了新的文献求助10
5秒前
Ava应助外向梦山采纳,获得10
6秒前
6秒前
桐桐应助hoyihoyi采纳,获得10
6秒前
Judy发布了新的文献求助10
7秒前
7秒前
清爽外绣发布了新的文献求助10
8秒前
星辰大海应助憨憨小黄采纳,获得10
8秒前
wwt发布了新的文献求助10
8秒前
8秒前
万能图书馆应助dengy采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190