Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring

人工智能 模式识别(心理学) 过程(计算) 特征(语言学) 计算机科学 超参数 融合 支持向量机 人工神经网络 高斯过程 高斯分布 语言学 操作系统 哲学 物理 量子力学
作者
Qisheng Wang,Xin Lin,Xianyin Duan,Ruqiang Yan,J.Y.H. Fuh,Kunpeng Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110440-110440 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110440
摘要

Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) process with great potential in producing high performance metal components. Due to lack of stability and repeatability of the building process, its wide application in industry is limited. The process monitoring and control are import to ensure product quality. The size and shape of the melt pool are continuously changing during the L-PBF process, which may lead to the generation of defects. To represent the melt pool variations more accurately, a new motion feature is extracted and a classification model is constructed to identify the melting state. Firstly, a 36-dimensional motion feature is obtained by contour unwrapping with respect to the melt pool centroid. Subsequently, a sample dataset of melt pool image including four categories of melting states is established. Finally, a Gaussian process classification (GPC) model is constructed to identify the melting state based on motion feature. To verify the performance of GPC, it is also given that the recognition results based on support vector machine (SVM) model, multilayer perceptron (MLP) and long short-term memory (LSTM) neural network. The research results show that under the advantages of automatically optimizing hyperparameters and providing probability distribution information of melting state, the GPC model can still achieve a better recognition result. The overall recognition rate reaches 87.1%, and the melting state can be better identified. A novel in-situ monitoring idea is provided for the L-PBF in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助987采纳,获得10
刚刚
soso1010发布了新的文献求助10
1秒前
放寒假的发布了新的文献求助10
1秒前
研友_VZG7GZ应助33采纳,获得10
1秒前
1秒前
研友_nvggxZ发布了新的文献求助10
2秒前
魏阳虹完成签到 ,获得积分10
2秒前
科目三应助葳蕤采纳,获得30
2秒前
2秒前
咕嘟咕嘟发布了新的文献求助10
3秒前
3秒前
3秒前
喜悦乾发布了新的文献求助10
4秒前
月12发布了新的文献求助10
4秒前
饱满妙松发布了新的文献求助10
5秒前
zhuyimin913发布了新的文献求助10
5秒前
5秒前
6秒前
wanci应助Ranan采纳,获得10
6秒前
悦耳的心完成签到 ,获得积分10
7秒前
平常的G完成签到,获得积分10
8秒前
Hello应助马马采纳,获得10
8秒前
xx完成签到 ,获得积分10
8秒前
trap发布了新的文献求助10
9秒前
9秒前
10秒前
烟花应助吉祥财子采纳,获得10
11秒前
犇骉完成签到,获得积分10
12秒前
12秒前
12秒前
Jasper应助Nini1203采纳,获得10
14秒前
14秒前
想毕业的小橙子完成签到,获得积分10
15秒前
咕嘟咕嘟发布了新的文献求助10
16秒前
蔚111完成签到 ,获得积分10
16秒前
脑洞疼应助xpy采纳,获得10
16秒前
accelerate发布了新的文献求助200
17秒前
poting应助yy采纳,获得10
17秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455082
求助须知:如何正确求助?哪些是违规求助? 3050350
关于积分的说明 9021081
捐赠科研通 2738991
什么是DOI,文献DOI怎么找? 1502390
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693216