已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring

人工智能 模式识别(心理学) 过程(计算) 特征(语言学) 计算机科学 超参数 融合 支持向量机 人工神经网络 高斯过程 高斯分布 语言学 量子力学 操作系统 物理 哲学
作者
Qisheng Wang,Xin Lin,Xianyin Duan,Ruqiang Yan,J.Y.H. Fuh,Kunpeng Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:198: 110440-110440 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110440
摘要

Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) process with great potential in producing high performance metal components. Due to lack of stability and repeatability of the building process, its wide application in industry is limited. The process monitoring and control are import to ensure product quality. The size and shape of the melt pool are continuously changing during the L-PBF process, which may lead to the generation of defects. To represent the melt pool variations more accurately, a new motion feature is extracted and a classification model is constructed to identify the melting state. Firstly, a 36-dimensional motion feature is obtained by contour unwrapping with respect to the melt pool centroid. Subsequently, a sample dataset of melt pool image including four categories of melting states is established. Finally, a Gaussian process classification (GPC) model is constructed to identify the melting state based on motion feature. To verify the performance of GPC, it is also given that the recognition results based on support vector machine (SVM) model, multilayer perceptron (MLP) and long short-term memory (LSTM) neural network. The research results show that under the advantages of automatically optimizing hyperparameters and providing probability distribution information of melting state, the GPC model can still achieve a better recognition result. The overall recognition rate reaches 87.1%, and the melting state can be better identified. A novel in-situ monitoring idea is provided for the L-PBF in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑发布了新的文献求助10
刚刚
刚刚
邱燈发布了新的文献求助10
3秒前
3秒前
dwl完成签到 ,获得积分0
4秒前
5秒前
SciGPT应助伶俐的静柏采纳,获得10
5秒前
Jasper应助xiuxiu采纳,获得10
5秒前
Hello应助微笑采纳,获得10
7秒前
7秒前
乐观的西装完成签到,获得积分10
8秒前
9秒前
大模型应助飘逸剑采纳,获得10
9秒前
Wayne72完成签到,获得积分0
9秒前
niuma发布了新的文献求助10
9秒前
木木发布了新的文献求助10
9秒前
10秒前
10秒前
南希maggie完成签到,获得积分10
12秒前
妩媚的夜柳完成签到 ,获得积分10
12秒前
13秒前
13秒前
逝水无痕发布了新的文献求助10
14秒前
微笑完成签到,获得积分10
15秒前
李文强发布了新的文献求助10
15秒前
15秒前
兔雳完成签到,获得积分10
16秒前
欧阳大娘完成签到,获得积分10
16秒前
LeeY.发布了新的文献求助10
17秒前
17秒前
ding应助玲珑油豆腐采纳,获得10
17秒前
18秒前
CodeCraft应助Super Zzzz采纳,获得10
18秒前
19秒前
机灵的老李完成签到,获得积分10
20秒前
闷声发发布了新的文献求助10
20秒前
欧阳大娘发布了新的文献求助10
20秒前
浮游应助木木采纳,获得10
21秒前
着急的青枫应助研友_LX01RL采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868471
求助须知:如何正确求助?哪些是违规求助? 4159926
关于积分的说明 12900040
捐赠科研通 3914325
什么是DOI,文献DOI怎么找? 2149797
邀请新用户注册赠送积分活动 1168260
关于科研通互助平台的介绍 1070659