Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring

人工智能 模式识别(心理学) 过程(计算) 特征(语言学) 计算机科学 超参数 融合 支持向量机 人工神经网络 高斯过程 高斯分布 语言学 量子力学 操作系统 物理 哲学
作者
Qisheng Wang,Xin Lin,Xianyin Duan,Ruqiang Yan,J.Y.H. Fuh,Kunpeng Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110440-110440 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110440
摘要

Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) process with great potential in producing high performance metal components. Due to lack of stability and repeatability of the building process, its wide application in industry is limited. The process monitoring and control are import to ensure product quality. The size and shape of the melt pool are continuously changing during the L-PBF process, which may lead to the generation of defects. To represent the melt pool variations more accurately, a new motion feature is extracted and a classification model is constructed to identify the melting state. Firstly, a 36-dimensional motion feature is obtained by contour unwrapping with respect to the melt pool centroid. Subsequently, a sample dataset of melt pool image including four categories of melting states is established. Finally, a Gaussian process classification (GPC) model is constructed to identify the melting state based on motion feature. To verify the performance of GPC, it is also given that the recognition results based on support vector machine (SVM) model, multilayer perceptron (MLP) and long short-term memory (LSTM) neural network. The research results show that under the advantages of automatically optimizing hyperparameters and providing probability distribution information of melting state, the GPC model can still achieve a better recognition result. The overall recognition rate reaches 87.1%, and the melting state can be better identified. A novel in-situ monitoring idea is provided for the L-PBF in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拓跋凝海完成签到,获得积分10
刚刚
刚刚
1秒前
无花果应助OU采纳,获得30
1秒前
知己完成签到,获得积分10
2秒前
xzDoctor发布了新的文献求助10
2秒前
116发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
tang完成签到,获得积分10
3秒前
孙闹闹发布了新的文献求助10
3秒前
科目三应助光暗影采纳,获得10
3秒前
王秋婷发布了新的文献求助10
3秒前
孤独的立轩完成签到 ,获得积分10
3秒前
4秒前
小二郎应助菜就多练采纳,获得10
4秒前
科研通AI6应助林林采纳,获得10
4秒前
喂鱼完成签到 ,获得积分10
4秒前
xshuang完成签到,获得积分10
5秒前
开朗蛋挞发布了新的文献求助10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
kk99123应助科研通管家采纳,获得10
5秒前
大个应助突突突采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
aassdj发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
汉堡包应助火星上夜云采纳,获得10
5秒前
moon应助科研通管家采纳,获得10
5秒前
小杜发布了新的文献求助10
5秒前
耳机单蹦应助科研通管家采纳,获得20
5秒前
chenng完成签到,获得积分10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
kk99123应助科研通管家采纳,获得10
6秒前
6秒前
我是老大应助Pom采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
儒雅棒球完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5398805
求助须知:如何正确求助?哪些是违规求助? 4518348
关于积分的说明 14069065
捐赠科研通 4430606
什么是DOI,文献DOI怎么找? 2432853
邀请新用户注册赠送积分活动 1425258
关于科研通互助平台的介绍 1404284