Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring

人工智能 模式识别(心理学) 过程(计算) 特征(语言学) 计算机科学 超参数 融合 支持向量机 人工神经网络 高斯过程 高斯分布 语言学 操作系统 哲学 物理 量子力学
作者
Qisheng Wang,Xin Lin,Xianyin Duan,Ruqiang Yan,J.Y.H. Fuh,Kunpeng Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110440-110440 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110440
摘要

Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) process with great potential in producing high performance metal components. Due to lack of stability and repeatability of the building process, its wide application in industry is limited. The process monitoring and control are import to ensure product quality. The size and shape of the melt pool are continuously changing during the L-PBF process, which may lead to the generation of defects. To represent the melt pool variations more accurately, a new motion feature is extracted and a classification model is constructed to identify the melting state. Firstly, a 36-dimensional motion feature is obtained by contour unwrapping with respect to the melt pool centroid. Subsequently, a sample dataset of melt pool image including four categories of melting states is established. Finally, a Gaussian process classification (GPC) model is constructed to identify the melting state based on motion feature. To verify the performance of GPC, it is also given that the recognition results based on support vector machine (SVM) model, multilayer perceptron (MLP) and long short-term memory (LSTM) neural network. The research results show that under the advantages of automatically optimizing hyperparameters and providing probability distribution information of melting state, the GPC model can still achieve a better recognition result. The overall recognition rate reaches 87.1%, and the melting state can be better identified. A novel in-situ monitoring idea is provided for the L-PBF in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
善学以致用应助小米采纳,获得10
1秒前
msn00发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
上官若男应助故意的乐菱采纳,获得10
5秒前
wfrg发布了新的文献求助10
5秒前
木木发布了新的文献求助10
5秒前
5秒前
zmy发布了新的文献求助10
6秒前
在水一方应助sci采纳,获得10
6秒前
王果冻完成签到 ,获得积分10
6秒前
琪琪完成签到,获得积分10
7秒前
han完成签到,获得积分10
7秒前
8秒前
ikutovaya完成签到,获得积分10
9秒前
greatsnow发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
jimX完成签到,获得积分10
12秒前
12秒前
愤怒的灵松完成签到,获得积分10
13秒前
浮游给张佳树的求助进行了留言
14秒前
kkk发布了新的文献求助10
14秒前
14秒前
科目三应助医学小废物采纳,获得10
14秒前
14秒前
小白天钓鱼完成签到 ,获得积分10
15秒前
16秒前
香蕉君达完成签到,获得积分10
16秒前
GHJ发布了新的文献求助10
17秒前
17秒前
zmy发布了新的文献求助10
17秒前
沉淀完成签到,获得积分10
19秒前
sci发布了新的文献求助10
19秒前
20秒前
20秒前
天真大神发布了新的文献求助10
20秒前
orixero应助zhigaow采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492873
求助须知:如何正确求助?哪些是违规求助? 4590780
关于积分的说明 14432553
捐赠科研通 4523428
什么是DOI,文献DOI怎么找? 2478337
邀请新用户注册赠送积分活动 1463356
关于科研通互助平台的介绍 1436082