Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring

人工智能 模式识别(心理学) 过程(计算) 特征(语言学) 计算机科学 超参数 融合 支持向量机 人工神经网络 高斯过程 高斯分布 语言学 量子力学 操作系统 物理 哲学
作者
Qisheng Wang,Xin Lin,Xianyin Duan,Ruqiang Yan,J.Y.H. Fuh,Kunpeng Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110440-110440 被引量:6
标识
DOI:10.1016/j.ymssp.2023.110440
摘要

Laser powder bed fusion (L-PBF) is a metal additive manufacturing (AM) process with great potential in producing high performance metal components. Due to lack of stability and repeatability of the building process, its wide application in industry is limited. The process monitoring and control are import to ensure product quality. The size and shape of the melt pool are continuously changing during the L-PBF process, which may lead to the generation of defects. To represent the melt pool variations more accurately, a new motion feature is extracted and a classification model is constructed to identify the melting state. Firstly, a 36-dimensional motion feature is obtained by contour unwrapping with respect to the melt pool centroid. Subsequently, a sample dataset of melt pool image including four categories of melting states is established. Finally, a Gaussian process classification (GPC) model is constructed to identify the melting state based on motion feature. To verify the performance of GPC, it is also given that the recognition results based on support vector machine (SVM) model, multilayer perceptron (MLP) and long short-term memory (LSTM) neural network. The research results show that under the advantages of automatically optimizing hyperparameters and providing probability distribution information of melting state, the GPC model can still achieve a better recognition result. The overall recognition rate reaches 87.1%, and the melting state can be better identified. A novel in-situ monitoring idea is provided for the L-PBF in this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linjunqi发布了新的文献求助10
1秒前
1秒前
还能不能学会了完成签到,获得积分10
1秒前
三叶葵完成签到,获得积分10
2秒前
2秒前
3秒前
锅锅发布了新的文献求助10
4秒前
5秒前
元谷雪发布了新的文献求助10
8秒前
Brain发布了新的文献求助10
9秒前
田様应助Halo采纳,获得10
9秒前
10秒前
阿潘完成签到,获得积分10
10秒前
科研通AI6应助嗷呜嗷呜采纳,获得10
11秒前
11秒前
打打应助Susan采纳,获得10
11秒前
13秒前
joyce313发布了新的文献求助100
14秒前
张向向完成签到 ,获得积分10
14秒前
崔晴晴发布了新的文献求助10
14秒前
叶白山发布了新的文献求助10
15秒前
磐xst完成签到 ,获得积分10
17秒前
18秒前
贪玩香烟发布了新的文献求助10
18秒前
orixero应助当当采纳,获得10
18秒前
18秒前
科研麻瓜发布了新的文献求助10
19秒前
20秒前
在水一方应助Cathy_Durham采纳,获得10
20秒前
11发布了新的文献求助10
21秒前
nancylan应助吃狼的羊采纳,获得10
21秒前
科研通AI6应助智圆行方采纳,获得30
22秒前
卜娜娜发布了新的文献求助10
22秒前
龙九局完成签到 ,获得积分10
23秒前
材料人发布了新的文献求助10
24秒前
宁闲尘完成签到,获得积分10
26秒前
26秒前
26秒前
思源应助深情宝马采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353148
求助须知:如何正确求助?哪些是违规求助? 4485753
关于积分的说明 13964410
捐赠科研通 4385954
什么是DOI,文献DOI怎么找? 2409683
邀请新用户注册赠送积分活动 1401959
关于科研通互助平台的介绍 1375704