弹性体
醋酸纤维素
材料科学
热塑性弹性体
聚合物
生物降解
韧性
纤维素
聚醋酸乙烯酯
化学工程
共聚物
复合材料
高分子化学
高分子科学
化学
有机化学
工程类
作者
Satoshi Katsuhara,Naoki Sunagawa,Kiyohiko Igarashi,Yutaka Takeuchi,Kenji Takahashi,Takuya Yamamoto,Feng Li,Kenji Tajima,Takuya Isono,Toshifumi Satoh
标识
DOI:10.1016/j.carbpol.2023.120976
摘要
Thermoplastic elastomers (TPEs) have long been used in a wide range of industries. However, most existing TPEs are petroleum-derived polymers. To realize environmentally benign alternatives to conventional TPEs, cellulose acetate is a promising TPE hard segment because of its sufficient mechanical properties, availability from renewable sources, and biodegradability in natural environments. Because the degree of substitution (DS) of cellulose acetate governs a range of physical properties, it is a useful parameter for designing novel cellulose acetate-based TPEs. In this study, we synthesized cellulose acetate-based ABA-type triblock copolymers (AcCelx-b-PDL-b-AcCelx) containing a celloologosaccharide acetate hard A segment (AcCelx, where x is the DS; x = 3.0, 2.6, and 2.3) and a poly(δ-decanolactone) (PDL) soft B segment. Small-angle X-ray scattering showed that decreasing the DS of AcCelx-b-PDL-b-AcCelx resulted in the formation of a more ordered microphase-separated structure. Owing to the microphase separation of the hard cellulosic and soft PDL segments, all the AcCelx-b-PDL-b-AcCelx samples exhibited elastomer-like properties. Moreover, the decrease in DS improved toughness and suppressed stress relaxation. Furthermore, preliminary biodegradation tests in an aqueous environment revealed that the decrease in DS endowed AcCelx-b-PDL-b-AcCelx with greater biodegradability potential. This work demonstrates the usefulness of cellulose acetate-based TPEs as next-generation sustainable materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI