CMANet: Cross-Modality Attention Network for Indoor-Scene Semantic Segmentation

计算机科学 人工智能 分割 编码器 棱锥(几何) 模态(人机交互) RGB颜色模型 特征(语言学) 计算机视觉 过程(计算) 模式识别(心理学) 语言学 操作系统 光学 物理 哲学
作者
Longze Zhu,Z. Kang,Mei Zhou,Xi Yang,Zhen Wang,Zhen Cao,Chenming Ye
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8520-8520
标识
DOI:10.3390/s22218520
摘要

Indoor-scene semantic segmentation is of great significance to indoor navigation, high-precision map creation, route planning, etc. However, incorporating RGB and HHA images for indoor-scene semantic segmentation is a promising yet challenging task, due to the diversity of textures and structures and the disparity of multi-modality in physical significance. In this paper, we propose a Cross-Modality Attention Network (CMANet) that facilitates the extraction of both RGB and HHA features and enhances the cross-modality feature integration. CMANet is constructed under the encoder–decoder architecture. The encoder consists of two parallel branches that successively extract the latent modality features from RGB and HHA images, respectively. Particularly, a novel self-attention mechanism-based Cross-Modality Refine Gate (CMRG) is presented, which bridges the two branches. More importantly, the CMRG achieves cross-modality feature fusion and produces certain refined aggregated features; it serves as the most crucial part of CMANet. The decoder is a multi-stage up-sampled backbone that is composed of different residual blocks at each up-sampling stage. Furthermore, bi-directional multi-step propagation and pyramid supervision are applied to assist the leaning process. To evaluate the effectiveness and efficiency of the proposed method, extensive experiments are conducted on NYUDv2 and SUN RGB-D datasets. Experimental results demonstrate that our method outperforms the existing ones for indoor semantic-segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静发布了新的文献求助10
1秒前
熊大对熊二说熊要有个熊样完成签到,获得积分10
1秒前
帅气翠霜完成签到,获得积分10
1秒前
1秒前
科研小白完成签到,获得积分10
1秒前
2秒前
崔崔发布了新的文献求助10
4秒前
orixero应助燕熙采纳,获得10
4秒前
喵喵喵发布了新的文献求助10
4秒前
扎心应助枝枝采纳,获得10
4秒前
代杰居然完成签到 ,获得积分10
5秒前
怕孤独的绿蓉完成签到 ,获得积分10
6秒前
wewewew完成签到,获得积分20
6秒前
7秒前
7秒前
清爽海云发布了新的文献求助10
7秒前
lvyan完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
叽里咕卢完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Powder完成签到,获得积分10
10秒前
南风完成签到,获得积分10
10秒前
鑫搭完成签到,获得积分10
10秒前
张三金z完成签到,获得积分10
10秒前
11秒前
魔幻小蚂蚁发布了新的文献求助100
11秒前
粗心的惜梦完成签到 ,获得积分10
11秒前
彭于晏应助idemipere采纳,获得10
11秒前
12秒前
汉堡包应助111采纳,获得10
12秒前
jiuge完成签到 ,获得积分10
12秒前
东方欲晓完成签到,获得积分10
13秒前
深情安青应助lm采纳,获得10
13秒前
13秒前
时光背后的我完成签到,获得积分10
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083