已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CMANet: Cross-Modality Attention Network for Indoor-Scene Semantic Segmentation

计算机科学 人工智能 分割 编码器 棱锥(几何) 模态(人机交互) RGB颜色模型 特征(语言学) 计算机视觉 过程(计算) 模式识别(心理学) 语言学 操作系统 光学 物理 哲学
作者
Longze Zhu,Z. Kang,Mei Zhou,Xi Yang,Zhen Wang,Zhen Cao,Chenming Ye
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (21): 8520-8520
标识
DOI:10.3390/s22218520
摘要

Indoor-scene semantic segmentation is of great significance to indoor navigation, high-precision map creation, route planning, etc. However, incorporating RGB and HHA images for indoor-scene semantic segmentation is a promising yet challenging task, due to the diversity of textures and structures and the disparity of multi-modality in physical significance. In this paper, we propose a Cross-Modality Attention Network (CMANet) that facilitates the extraction of both RGB and HHA features and enhances the cross-modality feature integration. CMANet is constructed under the encoder–decoder architecture. The encoder consists of two parallel branches that successively extract the latent modality features from RGB and HHA images, respectively. Particularly, a novel self-attention mechanism-based Cross-Modality Refine Gate (CMRG) is presented, which bridges the two branches. More importantly, the CMRG achieves cross-modality feature fusion and produces certain refined aggregated features; it serves as the most crucial part of CMANet. The decoder is a multi-stage up-sampled backbone that is composed of different residual blocks at each up-sampling stage. Furthermore, bi-directional multi-step propagation and pyramid supervision are applied to assist the leaning process. To evaluate the effectiveness and efficiency of the proposed method, extensive experiments are conducted on NYUDv2 and SUN RGB-D datasets. Experimental results demonstrate that our method outperforms the existing ones for indoor semantic-segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助难过的疾采纳,获得10
刚刚
2秒前
喂喂喂发布了新的文献求助10
3秒前
3秒前
8秒前
9秒前
二号发布了新的文献求助10
10秒前
11秒前
11秒前
肿瘤柳叶刀完成签到,获得积分10
11秒前
fduqyy发布了新的文献求助10
12秒前
天天快乐应助kai采纳,获得10
13秒前
CipherSage应助小博士328采纳,获得10
14秒前
15秒前
15秒前
LMR发布了新的文献求助20
15秒前
15秒前
17秒前
Biggest发布了新的文献求助10
17秒前
18秒前
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得30
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
闪闪落雁发布了新的文献求助10
21秒前
90无脸男完成签到,获得积分10
21秒前
小巧亦竹发布了新的文献求助10
21秒前
21秒前
千里奔袭NG港关注了科研通微信公众号
22秒前
小博士328完成签到,获得积分10
22秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980465
求助须知:如何正确求助?哪些是违规求助? 3524436
关于积分的说明 11221420
捐赠科研通 3261850
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283