Multi-scale convolutional neural network for texture recognition

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 纹理(宇宙学) 特征(语言学) 特征提取 人工神经网络 计算机视觉 图像(数学) 语言学 哲学
作者
Xile Wei,Benyong Hu,Tianshi Gao,Jiang Wang,Bin Deng
出处
期刊:Displays [Elsevier]
卷期号:75: 102324-102324 被引量:5
标识
DOI:10.1016/j.displa.2022.102324
摘要

Texture is of great significance for humans and robots to recognize the surface features of objects. In the field of texture recognition, methods based on spatial information have been widely applied. However, in the case of fine texture recognition, the methods only using spatial features for texture recognition may ignore the features of small texture and result in poor recognition accuracy. In this paper, a Multi-Scale Convolutional Neural Network (MS-CNN) is proposed to recognize millimetric fine textures. MS-CNN has three paths to extract features of different time scales from different numbers of continuous pressure images. The three paths have the same backbone network structure, but the number of convolution cores of the convolution layer in the backbone network of adjacent paths is doubled. After the convolution layer, we add SE-Net to automatically obtain the importance of each feature channel through learning, and then improve the useful features to further improve the accuracy. Finally, the output of all paths is averaged, and the classification vector is calculated through the final full connection layer. To validate MS-CNN, data sets containing 9 kinds of millimetric fine textures are obtained by flexible tactile sensors. The pressure image is transformed into one-dimensional vectors and these vectors are arranged into a sample in time order as the input of MS-CNN. In addition, the attention mechanism module is applied to MS-CNN to train the weight of each convolution channel and increase the proportion of useful features in the network. Ablation experiments prove that our modification is effective and our method achieves an accuracy of 81.83% for 9 fine textures. Compared with traditional recognition methods, our method achieves better recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
刚刚
huanhuan完成签到,获得积分10
1秒前
小刘不笨完成签到,获得积分10
1秒前
吕绪特完成签到 ,获得积分10
1秒前
2秒前
愉快的夏菡完成签到,获得积分10
2秒前
研友_gnv61n完成签到,获得积分10
2秒前
zmy完成签到,获得积分10
2秒前
小蘑菇应助守约采纳,获得10
3秒前
3秒前
空白发布了新的文献求助10
4秒前
buno应助721采纳,获得20
4秒前
石阶上完成签到 ,获得积分10
4秒前
du完成签到 ,获得积分10
4秒前
Xu完成签到,获得积分10
5秒前
mmmm完成签到,获得积分10
5秒前
5秒前
情怀应助YY采纳,获得10
5秒前
懦弱的安珊完成签到,获得积分10
6秒前
Akim应助xiaokezhang采纳,获得10
6秒前
6秒前
柠木完成签到 ,获得积分10
6秒前
系统提示发布了新的文献求助10
6秒前
marigold完成签到,获得积分10
6秒前
Gaoge完成签到,获得积分10
7秒前
愉快的无招完成签到,获得积分10
7秒前
7秒前
HEIKU应助习习采纳,获得10
8秒前
8秒前
8秒前
8秒前
合适苗条完成签到,获得积分10
8秒前
Zn应助开水泡饼采纳,获得10
8秒前
科目三应助Liu采纳,获得10
9秒前
9秒前
eating完成签到,获得积分10
9秒前
李双艳完成签到,获得积分10
9秒前
英姑应助科研混子采纳,获得10
9秒前
li完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678