亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale convolutional neural network for texture recognition

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 纹理(宇宙学) 特征(语言学) 特征提取 人工神经网络 计算机视觉 图像(数学) 语言学 哲学
作者
Xile Wei,Benyong Hu,Tianshi Gao,Jiang Wang,Bin Deng
出处
期刊:Displays [Elsevier BV]
卷期号:75: 102324-102324 被引量:5
标识
DOI:10.1016/j.displa.2022.102324
摘要

Texture is of great significance for humans and robots to recognize the surface features of objects. In the field of texture recognition, methods based on spatial information have been widely applied. However, in the case of fine texture recognition, the methods only using spatial features for texture recognition may ignore the features of small texture and result in poor recognition accuracy. In this paper, a Multi-Scale Convolutional Neural Network (MS-CNN) is proposed to recognize millimetric fine textures. MS-CNN has three paths to extract features of different time scales from different numbers of continuous pressure images. The three paths have the same backbone network structure, but the number of convolution cores of the convolution layer in the backbone network of adjacent paths is doubled. After the convolution layer, we add SE-Net to automatically obtain the importance of each feature channel through learning, and then improve the useful features to further improve the accuracy. Finally, the output of all paths is averaged, and the classification vector is calculated through the final full connection layer. To validate MS-CNN, data sets containing 9 kinds of millimetric fine textures are obtained by flexible tactile sensors. The pressure image is transformed into one-dimensional vectors and these vectors are arranged into a sample in time order as the input of MS-CNN. In addition, the attention mechanism module is applied to MS-CNN to train the weight of each convolution channel and increase the proportion of useful features in the network. Ablation experiments prove that our modification is effective and our method achieves an accuracy of 81.83% for 9 fine textures. Compared with traditional recognition methods, our method achieves better recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
40秒前
boymin2015完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
小学生的练习簿完成签到,获得积分0
2分钟前
3分钟前
3分钟前
aydidar发布了新的文献求助10
3分钟前
kongkai完成签到,获得积分10
3分钟前
细心的梦芝完成签到 ,获得积分10
3分钟前
3分钟前
慕青应助小白采纳,获得10
4分钟前
打打应助小白采纳,获得10
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
krajicek完成签到,获得积分10
4分钟前
4分钟前
念工人完成签到,获得积分10
5分钟前
土豆你个西红柿完成签到 ,获得积分10
5分钟前
kongkai发布了新的文献求助200
5分钟前
5分钟前
5分钟前
5分钟前
寒冷毛衣发布了新的文献求助10
5分钟前
华仔应助寒冷毛衣采纳,获得10
5分钟前
6分钟前
6分钟前
Wei发布了新的文献求助10
7分钟前
忧伤的绍辉完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963210
求助须知:如何正确求助?哪些是违规求助? 3509100
关于积分的说明 11145089
捐赠科研通 3242212
什么是DOI,文献DOI怎么找? 1791800
邀请新用户注册赠送积分活动 873168
科研通“疑难数据库(出版商)”最低求助积分说明 803643