Multi-scale convolutional neural network for texture recognition

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 纹理(宇宙学) 特征(语言学) 特征提取 人工神经网络 计算机视觉 图像(数学) 语言学 哲学
作者
Xile Wei,Benyong Hu,Tianshi Gao,Jiang Wang,Bin Deng
出处
期刊:Displays [Elsevier BV]
卷期号:75: 102324-102324 被引量:5
标识
DOI:10.1016/j.displa.2022.102324
摘要

Texture is of great significance for humans and robots to recognize the surface features of objects. In the field of texture recognition, methods based on spatial information have been widely applied. However, in the case of fine texture recognition, the methods only using spatial features for texture recognition may ignore the features of small texture and result in poor recognition accuracy. In this paper, a Multi-Scale Convolutional Neural Network (MS-CNN) is proposed to recognize millimetric fine textures. MS-CNN has three paths to extract features of different time scales from different numbers of continuous pressure images. The three paths have the same backbone network structure, but the number of convolution cores of the convolution layer in the backbone network of adjacent paths is doubled. After the convolution layer, we add SE-Net to automatically obtain the importance of each feature channel through learning, and then improve the useful features to further improve the accuracy. Finally, the output of all paths is averaged, and the classification vector is calculated through the final full connection layer. To validate MS-CNN, data sets containing 9 kinds of millimetric fine textures are obtained by flexible tactile sensors. The pressure image is transformed into one-dimensional vectors and these vectors are arranged into a sample in time order as the input of MS-CNN. In addition, the attention mechanism module is applied to MS-CNN to train the weight of each convolution channel and increase the proportion of useful features in the network. Ablation experiments prove that our modification is effective and our method achieves an accuracy of 81.83% for 9 fine textures. Compared with traditional recognition methods, our method achieves better recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
frank101ljh发布了新的文献求助10
1秒前
完美世界应助lili采纳,获得10
4秒前
4秒前
xiaoyanzi完成签到,获得积分10
4秒前
鸡蛋发布了新的文献求助10
4秒前
6秒前
领导范儿应助小小檀健次采纳,获得10
6秒前
脑洞疼应助大力凝竹采纳,获得10
6秒前
付付付付付付得正完成签到,获得积分10
6秒前
th应助missfast采纳,获得20
6秒前
Artorias发布了新的文献求助10
7秒前
7秒前
哆啦的空间站应助章鱼采纳,获得20
8秒前
析界成微发布了新的文献求助10
8秒前
8秒前
光亮的睿渊完成签到,获得积分10
9秒前
lucfer发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
14秒前
Artorias完成签到,获得积分10
18秒前
18秒前
析界成微完成签到,获得积分10
20秒前
乐乐应助龙傲天采纳,获得10
20秒前
Brave发布了新的文献求助10
20秒前
时尚红酒发布了新的文献求助10
21秒前
22秒前
FashionBoy应助Oliver_Pcf采纳,获得10
22秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
i十七发布了新的文献求助20
26秒前
26秒前
wwww完成签到,获得积分10
26秒前
夜莺发布了新的文献求助10
27秒前
慕青应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
Zx_1993应助科研通管家采纳,获得50
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049387
求助须知:如何正确求助?哪些是违规求助? 4277396
关于积分的说明 13333673
捐赠科研通 4092082
什么是DOI,文献DOI怎么找? 2239476
邀请新用户注册赠送积分活动 1246338
关于科研通互助平台的介绍 1174900