Multi-scale convolutional neural network for texture recognition

卷积神经网络 卷积(计算机科学) 计算机科学 模式识别(心理学) 人工智能 纹理(宇宙学) 特征(语言学) 特征提取 人工神经网络 计算机视觉 图像(数学) 语言学 哲学
作者
Xile Wei,Benyong Hu,Tianshi Gao,Jiang Wang,Bin Deng
出处
期刊:Displays [Elsevier]
卷期号:75: 102324-102324 被引量:5
标识
DOI:10.1016/j.displa.2022.102324
摘要

Texture is of great significance for humans and robots to recognize the surface features of objects. In the field of texture recognition, methods based on spatial information have been widely applied. However, in the case of fine texture recognition, the methods only using spatial features for texture recognition may ignore the features of small texture and result in poor recognition accuracy. In this paper, a Multi-Scale Convolutional Neural Network (MS-CNN) is proposed to recognize millimetric fine textures. MS-CNN has three paths to extract features of different time scales from different numbers of continuous pressure images. The three paths have the same backbone network structure, but the number of convolution cores of the convolution layer in the backbone network of adjacent paths is doubled. After the convolution layer, we add SE-Net to automatically obtain the importance of each feature channel through learning, and then improve the useful features to further improve the accuracy. Finally, the output of all paths is averaged, and the classification vector is calculated through the final full connection layer. To validate MS-CNN, data sets containing 9 kinds of millimetric fine textures are obtained by flexible tactile sensors. The pressure image is transformed into one-dimensional vectors and these vectors are arranged into a sample in time order as the input of MS-CNN. In addition, the attention mechanism module is applied to MS-CNN to train the weight of each convolution channel and increase the proportion of useful features in the network. Ablation experiments prove that our modification is effective and our method achieves an accuracy of 81.83% for 9 fine textures. Compared with traditional recognition methods, our method achieves better recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅竹发布了新的文献求助10
1秒前
3秒前
5秒前
5秒前
香蕉麦片完成签到 ,获得积分10
7秒前
7秒前
yyru发布了新的文献求助10
7秒前
路内里完成签到,获得积分20
8秒前
8秒前
852应助nly采纳,获得10
8秒前
8秒前
陈陈完成签到,获得积分10
9秒前
巴拉完成签到,获得积分10
9秒前
devil发布了新的文献求助10
9秒前
Orange应助可乐鸡翅采纳,获得10
9秒前
烂漫成败完成签到 ,获得积分10
11秒前
kyt发布了新的文献求助10
11秒前
11秒前
香蕉觅云应助小R采纳,获得30
11秒前
自律发布了新的文献求助10
11秒前
12秒前
qi-keyan完成签到 ,获得积分10
12秒前
13秒前
王志鹏完成签到 ,获得积分10
14秒前
红枫没有微雨怜完成签到 ,获得积分10
14秒前
所所应助Elsa采纳,获得10
15秒前
paul发布了新的文献求助20
15秒前
书生也是小郎中完成签到 ,获得积分10
15秒前
我本大神发布了新的文献求助10
15秒前
啥呀啥呀发布了新的文献求助10
16秒前
chunb发布了新的文献求助10
16秒前
江上完成签到 ,获得积分10
16秒前
yyru完成签到,获得积分10
17秒前
17秒前
阳光的梦寒完成签到 ,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072136
求助须知:如何正确求助?哪些是违规求助? 2726009
关于积分的说明 7492096
捐赠科研通 2373524
什么是DOI,文献DOI怎么找? 1258598
科研通“疑难数据库(出版商)”最低求助积分说明 610301
版权声明 596945