Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A

催化作用 化学 双酚A 反应速率常数 二茂铁 浸出(土壤学) 电子转移 降级(电信) 单线态氧 氧气 无机化学 光化学 物理化学 动力学 有机化学 土壤水分 土壤科学 环氧树脂 电极 物理 电信 量子力学 电化学 计算机科学 环境科学
作者
Zhikun Huang,Haojie Yu,Li Wang,Mingyuan Wang,Xiaowei Liu,Di Shen,Sudan Shen,Shuning Ren,Tengfei Lin,Shuangying Lei
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:305: 122402-122402 被引量:54
标识
DOI:10.1016/j.seppur.2022.122402
摘要

Heterogeneous advanced oxidation process (AOP) technique exhibits a great potential to degrade recalcitrant and toxic bisphenol A (BPA) in water; however, traditional catalysts seriously suffer from agglomeration, leaching of active metal ions and poor stability. Herein, a serial of single atom catalysts (SACs) based on single Fe atoms anchored on N-doped porous carbon matrix (Fe-N-C) were successfully prepared through simple pyrolysis method. The Fe content of Fe-N-C could be accurately controlled by changing the doped ferrocene (Fc) in ZIF-8 precursor. The obtained Fe-N-C exhibited outstanding catalytic activity to active peroxymonosulfate (PMS) for BPA degradation, 94.3% BPA could be removed within 10 min, the reaction rate constant (k) of Fe-N-C reached to 0.395 min−1, which was 9.5 times faster than that of counterpart N-C, which derived from the synergistic effect of radical pathway, non-radical pathway and electron-transfer. In Fe-N-C/PMS system, the singlet oxygen (1O2) has been proved as the main reactive oxygen species (ROS) to dominate the BPA degradation process. Besides, the Fe-N-C/PMS and Fe-N-C/BPA interfacial interactions were investigated by density functional theory (DFT) calculations, which disclosed the formation of high-valent iron-oxo species (Fe(IV)=O) and interfacial electron-transfer to comprehensively and thoroughly investigate the mechanism of BPA degradation. This work aims to providing novel insight for investigation of BPA degradation mechanism in AOP system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
千空发布了新的文献求助10
5秒前
5秒前
6秒前
小兑发布了新的文献求助10
6秒前
7秒前
小松果完成签到,获得积分20
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
10秒前
10秒前
沉默钢笔完成签到,获得积分10
10秒前
10秒前
lllxxx发布了新的文献求助10
11秒前
xbz123qwe发布了新的文献求助10
11秒前
11秒前
Ycx完成签到,获得积分10
12秒前
robert发布了新的文献求助20
12秒前
花生米完成签到 ,获得积分10
13秒前
Lucas应助Haj1mi采纳,获得10
13秒前
13秒前
深情安青应助我是five采纳,获得80
13秒前
渔婆发布了新的文献求助10
14秒前
呆萌冷风发布了新的文献求助10
14秒前
15秒前
ki发布了新的文献求助10
15秒前
天天快乐应助stuuuuuuuuuuudy采纳,获得10
16秒前
16秒前
王洪完成签到,获得积分10
16秒前
16秒前
17秒前
robert完成签到,获得积分10
17秒前
17秒前
17秒前
splaker7完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655855
求助须知:如何正确求助?哪些是违规求助? 4800784
关于积分的说明 15074114
捐赠科研通 4814288
什么是DOI,文献DOI怎么找? 2575593
邀请新用户注册赠送积分活动 1530977
关于科研通互助平台的介绍 1489613