Bayesian network based vulnerability detection of blockchain smart contracts

块链 智能合约 计算机科学 坚固性 脆弱性(计算) 贝叶斯网络 计算机安全 贝叶斯概率 组分(热力学) 钥匙(锁) 脆弱性评估 贝叶斯推理 人工智能 机器学习 程序设计语言 心理学 物理 心理弹性 心理治疗师 热力学
作者
K. Lakshmi Narayana,Sathiyamurthy Kuppuswamy
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:44 (2): 1907-1920
标识
DOI:10.3233/jifs-221898
摘要

Ethereum is one of the popular Blockchain platform. The key component in the Ethereum Blockchain is the smart contract. Smart contracts (SC) are like normal computer programs which are written mostly in solidity high-level object-oriented programming language. Smart contracts allow completing transactions directly between two parties in the network without any middle man or mediator. Modification of the smart contracts are not possible once deployed into the Blockchain. Thus smart contract has to be vulnerable free before deploying into the Blockchain. In this paper, Bayesian Network Model was designed and constructed based on Bayesian learning concept to detect smart contract security vulnerabilities which are Reentrancy, Tx.origin and DOS. The results showed that the proposed BNMC (Bayesian Network Model Construction) design is able to detect the severity of each vulnerability and also suggest the reasons for the vulnerability. The accuracy of the proposed BNMC results are improved (accuracy 8% increased for both Reentracy and Tx.origin, 6% increased for DOS), compared with traditional method LSTM. This proposed BNMS design and implementation is the first attempt to detect smart contract vulnerabilities using Bayesian Networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leye发布了新的文献求助10
1秒前
科研大王发布了新的文献求助10
2秒前
田様应助清秀的语堂采纳,获得10
2秒前
3秒前
学术小白发布了新的文献求助10
3秒前
3秒前
111完成签到,获得积分20
4秒前
6秒前
扬大小汤完成签到,获得积分10
7秒前
7秒前
tom81882发布了新的文献求助10
7秒前
李健应助啦啦啦采纳,获得10
8秒前
9秒前
litter蟹发布了新的文献求助10
9秒前
nanaki发布了新的文献求助10
11秒前
汉堡包应助想毕业的马涛采纳,获得10
11秒前
12秒前
12秒前
12秒前
Phoenix完成签到,获得积分10
12秒前
星辰大海应助111采纳,获得10
14秒前
15秒前
脑洞疼应助liang采纳,获得10
15秒前
15秒前
我是老大应助XMUh采纳,获得10
15秒前
斯文远望应助蔡蔡不菜菜采纳,获得10
16秒前
凌凌漆完成签到 ,获得积分10
17秒前
FashionBoy应助guajiguaji采纳,获得10
17秒前
semigreen完成签到,获得积分10
17秒前
细心忆寒完成签到 ,获得积分20
17秒前
陈梦鼠发布了新的文献求助10
18秒前
19秒前
nanaki完成签到,获得积分10
19秒前
太阳发布了新的文献求助30
20秒前
Orange应助陈梦鼠采纳,获得10
23秒前
happy发布了新的文献求助10
24秒前
24秒前
俊逸小笼包应助科研大王采纳,获得10
25秒前
26秒前
小巧亦竹完成签到,获得积分10
27秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206987
求助须知:如何正确求助?哪些是违规求助? 2856316
关于积分的说明 8104204
捐赠科研通 2521502
什么是DOI,文献DOI怎么找? 1354661
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292